Journal of Innovative Optical Health Sciences, 2023, 16 (6): 2350008, Published Online: Dec. 23, 2023  

Accuracy improvement for classifying retinal OCT images by diseases using deep learning-based selective denoising approach

Author Affiliations
Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, P. R. China
Abstract

In ophthalmology, retinal optical coherence tomography (OCT) images with noticeable structural features help identify human eyes as healthy or diseased. The recently hot artificial intelligence (AI) realized this recognition process automatically. However, speckle noise in the original retinal OCT image reduces the accuracy of disease classification. This study presents a time-saving approach based on deep learning to improve classification accuracy by removing the noise from the original dataset. Firstly, four pre-trained convolutional neural networks (CNNs) from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) were trained to classify the original images into two categories: The noise reduction required (NRR) and the noise-free (NF) images. Among the CNNs, VGG19_BN performed best with 98% accuracy and 99% recall. Then, we used the block-matching and 3D filtering (BM3D) algorithm to denoise the NRR images. Those noise-removed NRR and the NF images form the processed dataset. The quality of images in the dataset is prominently ameliorated after denoising, which is valid to improve the models’ performance. The original and processed datasets were tested on the four pre-trained CNNs to evaluate the effectiveness of our proposed approach. We have compared the CNNs, and the results show the performance of the CNNs trained with the processed dataset is improved by an average of 2.04%, 5.19%, and 5.10% under overall accuracy (OA), Macro F1-score, and Micro F1-score, respectively. Especially for DenseNet161, the OA is improved to 98.14%. Our proposed method demonstrates its effectiveness in improving classification accuracy and opens a new solution to reduce denoising time-consuming for large datasets.

Lantian Hu, Ruixiang Guo, Sifan Li, Jing Cao, Qian Liu. Accuracy improvement for classifying retinal OCT images by diseases using deep learning-based selective denoising approach[J]. Journal of Innovative Optical Health Sciences, 2023, 16(6): 2350008.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!