中国激光, 2024, 51 (1): 0102002, 网络出版: 2024-01-31  

飞秒激光仿生调控材料表面浸润性:当前进展与挑战(特邀) 下载: 1104次内封底文章创刊五十周年特邀【增强内容出版】

Bioinspired Controlling the Surface Wettability of Materials by Femtosecond Laser: Current Progress and Challenges (Invited)
作者单位
中国科学技术大学精密机械与精密仪器系,安徽 合肥 230026
摘要

特殊浸润性表面在众多应用领域都发挥着重要作用,因而它的制备不论是在基础科学研究领域还是在工程实际应用方面都具有重要意义。可加工材料广泛以及擅长微纳结构精细设计的优势使飞秒激光成为一种制备各种超浸润微结构表面的有效工具。本综述系统总结了飞秒激光微加工技术在调控材料表面浸润性方面的研究进展。基于飞秒激光对材料表面微纳结构的设计和改性,可以实现超亲水与超疏水性、超疏油性、水下超疏气与超亲气性、液体灌注超滑表面、水下超疏聚合物性、超疏液态金属性、可调黏滞性、各向异性浸润性、智能可调浸润性等一系列极端浸润性质。这些特殊的浸润性使得飞秒激光作用后的材料获得了一系列实际应用,如防水/防油/防气、自清洁、液滴操控、液体图案化、浮力增强、微小液滴/气泡释放、油水分离、水气分离、防结冰、防腐蚀、水下减阻、水雾收集、微流控、柔性电路/电子器件、细胞工程、生物医疗、海水淡化、表面增强拉曼散射等。最后,本文总结讨论了飞秒激光调控材料表面浸润性技术的突出优势以及当前所面临的挑战。

Abstract

Wettability is as a crucial physical and chemical property of solid surfaces. Surfaces with unique wettability, especially, attract considerable attention. Their significant impact spans various domains, including energy use, environmental protection, chemical engineering, healthcare, sustainable development, military defense, manufacturing, and agricultural breeding. Consequently, special wettability, particularly extreme wettability (i.e., superwettability), is emerging as a hot research topic in the field of micro- and nano-manufacturing. The study of superwettability originates from observing nature’s unique wetting phenomena and deeply investigating their formation mechanisms. Numerous plants and animals have evolved surfaces with special wetting properties to adapt to their environments. Inspired by natural superwettability, a range of micro/nano-manufacturing technologies have been employed to create various superwetting materials. These technologies include machining, photolithography, chemical etching, template replication, plasma etching, vapor deposition, electrochemical methods, the sol-gel process, electrospinning, electrochemical deposition, self-assembly, and spray/dip coating. Although existing microfabrication methods can produce superwetting structures with outstanding properties, traditional approaches face several technical challenges in achieving superwettability. These include complex preparation steps, constraints to specific substrate materials, and a lack of flexibility. Notably, most micromachining methods are limited to processing certain materials (for example, lithography is restricted to photosensitive polymers) or struggle with the precise design of micro/nanostructures (such as chemical etching, which can rapidly create large areas of uniform microstructures but faces difficulties in patterning these structures). These limitations significantly hinder the practical application of surfaces with engineered superwettability. Developing a versatile microfabrication technology capable of preparing various superwetting surfaces remains a significant challenge.

The characteristics of ultrashort pulse width and ultrahigh peak power establish femtosecond lasers as pivotal tools in modern extreme and ultra-precision manufacturing. Given that surface microstructure significantly influences the wettability of solid materials, femtosecond laser processing can create a variety of superwettability by constructing specialized microscale and nanoscale structures on material surfaces. Superhydrophilicity can be realized by forming sufficiently rough microstructures on inherently hydrophilic materials. In the case of superhydrophobicity, materials are generally categorized into two types. For intrinsically hydrophobic materials, superhydrophobicity can be directly achieved by preparing hierarchical micro/nanostructures on the substrate surfaces. For inherently hydrophilic materials, after forming surface microstructures with a femtosecond laser, it is often necessary to further reduce the surface energy via chemical modification. On a superhydrophilic surface, water droplets spread rapidly, while a superhydrophobic surface functions to repel water, offering waterproofing. Superoleophobic surfaces are categorized into two types, effective in air and underwater, respectively. To create superoleophobic surfaces in air, re-entrant bending microstructures are introduced, combined with stringent low-surface-energy chemical modifications. These microstructures are directly crafted onto the surface of hydrophilic substrates to realize underwater superoleophobicity. Superoleophobic surfaces repel oily liquids and some organic liquids with low surface energy. Generally, superhydrophilic surfaces exhibit superaerophobicity underwater, and superhydrophobic surfaces demonstrate superaerophilicity underwater. The superaerophobic surface effectively repels bubble adhesion, while the superaerophilic surface can adsorb tiny bubbles in water. Slippery surfaces created using femtosecond laser-induced porous network microstructures enable droplet contact with the material surface in a liquid/liquid mode, repelling various liquids. Underwater superpolymphobicity is achieved by constructing micro/nanostructures on the surface of hydrophilic materials. This property is useful for preventing the adhesion of liquid polymers to solid materials and assisting in the design of polymer shapes. Irrespective of superhydrophobicity or superhydrophilicity, femtosecond laser-induced microstructures exhibit supermetalphobicity. By designing patterned microstructures on the surface of flexible materials using a femtosecond laser, liquid metals can be transformed into circuits, enabling the creation of flexible electronic devices. Superwetting surfaces with controllable adhesion are achievable through the femtosecond laser-based design of surface micro/nanostructures. The adhesion level of these prepared surfaces to droplets can range from very low to very high. Anisotropic wettability is attainable on the anisotropically structured surfaces crafted by the femtosecond laser. Reversibly switchable wettability on these laser-structured surfaces can be achieved through three approaches: adjusting surface chemistry, modifying surface microtopography, and altering the ambient environment. The special wettability endows femtosecond laser-treated materials with a range of practical applications, such as waterproofing, self-cleaning, droplet manipulation, liquid patterning, buoyancy enhancement, tiny drop and bubble release, oil-water separation, water/gas separation, anti-icing, anti-corrosion, underwater drag reduction, water/fog collection, microfluidics, flexible circuits/electronics, cell engineering, biomedical engineering, seawater desalination, surface-enhanced Raman scattering, and more.

This review comprehensively outlines the advancements in femtosecond laser processing for manipulating the surface wettability of materials. By employing femtosecond lasers to design micro/nanostructures on various material surfaces, a range of unique wettabilities has been achieved. These include superhydrophilicity, superhydrophobicity, superoleophobicity, underwater superaerophobicity and superaerophilicity, slippery liquid-infused porous surfaces, underwater superpolymphobicity, supermetalphobicity, controllable adhesion, anisotropic wettability, and smart switchable wettability. The practical applications of these femtosecond laser-structured superwetting materials have been diverse and significant.

Currently, the technology of femtosecond laser-controlled surface wettability faces several challenges. A major bottleneck is processing efficiency, which still restricts the broader application of femtosecond laser micromachining technology. Despite new strategies such as laser parallel processing and light-field regulation, efficiency falls short of industrial application requirements. Additionally, if the laser focus deviates significantly from the material surface, then the desired microstructures cannot be effectively prepared. This defocusing issue also makes it difficult to create uniform superwetting micro/nanostructures on complex curved surfaces. Moreover, similar to surfaces prepared by other methods, femtosecond laser-induced superwettability surfaces encounter stability issues in practical applications. These surfaces often lose their initial extreme wettability when exposed to friction or specific operating environments. Thus, future research in this field should address these bottlenecks, enhancing the practicality and scalability of superwetting materials prepared by femtosecond lasers for real-world applications.

1 引言

浸润性是固体表面基本的物理化学性质之一。其中,具有特殊浸润性的表面格外引人瞩目。由于可在能源利用、环境保护、化工制造、医疗健康、可持续发展、****、生产制造、农业养殖等应用领域发挥重要作用,特殊浸润性尤其是极端浸润性(即超浸润性)成为了当前微纳制造领域的热点研究方向之一1-10。极端浸润性的研究始于对自然界中特殊浸润现象的观察以及对其背后形成机制的深入探究11-13。自然界中的许多动植物都进化出了特殊的浸润性表面,以适应所处复杂的生存环境,例如,荷叶具有自清洁功能14-15,水黾能够在水面跳跃16,蚊子眼能够在潮湿环境中防雾17,槐叶萍在水中能够减阻18,纳米布沙漠甲虫能够在干旱的沙漠环境下从空气中收集水雾19,草鱼在水下不会被油污黏附20,昆虫会滑落进猪笼草口袋中21,等等。研究发现,固体材料的浸润性主要由其化学组成和微观表面形貌共同决定22-26。受自然界中特殊浸润现象的启发,多种微纳制造技术已经被利用来实现极端浸润性材料的制备,如机械加工法、光刻法、化学刻蚀、模板复制法、等离子体刻蚀、气相沉积法、电化学法、溶胶凝胶法、静电纺丝、电化学沉积、自组装、喷/浸涂法等27-34。所制备的超浸润材料已被广泛应用于防液体润湿35-36、自清洁37、微液滴操控38-40、油水分离41-43、抗冰/雾/雪44-45、细胞工程46-47、防污48-49、水雾收集50-51、液体图案化52、防腐蚀53-54、水下减阻55、浮力增强56-57、实验室芯片58-59等领域。尽管上述微纳加工方法都可以制备出性能优异的超浸润结构,但其中传统的微纳制造技术在制备超浸润表面方面受到了一些技术上的限制,如制备步骤复杂、局限于特定的基底材料、缺乏灵活性等。特别是多数微加工方法只能处理特殊限定的材料(如光刻法局限于光敏聚合物)或难以对微纳结构进行精细设计(如化学腐蚀法能够快速制备大面积均匀的微结构但却难以实现微结构的图案化),极大地限制了所制备超浸润表面的实际应用。发展一种通用的微纳制造技术来实现各种超浸润材料的高效制备以及浸润性的复杂调控目前仍是一个巨大的挑战。

超短脉冲宽度和超高峰值功率的特点使得飞秒(10-15 s)激光成为现代极端制造和超精密制造领域的重要工具之一60-62。飞秒激光微加工技术具有热效应低、空间分辨率高、非接触加工等优点63-66。特别地,飞秒激光可以作用于任意给定的材料,能够在这些材料表面直接制备出不同类型的微米/纳米多级结构。聚焦激光的作用位置可以被加工程序精确控制,因而飞秒激光也擅于微纳结构的精细设计与调控。通过简单的一步激光烧蚀,飞秒激光可以在各类材料表面上制备出不同形貌的微米/纳米结构。表面微结构对固体材料的浸润性有至关重要的影响,因此,通过飞秒激光在材料表面构建特殊的微米/纳米尺度结构,可以获得各种各样的超浸润特性。

本文将系统总结飞秒激光微加工技术在调控材料表面浸润性方面的应用,主要聚焦于各种浸润性表面的构建原理、基于飞秒激光的实现方法、不同浸润性之间的内在联系与区别以及各种超浸润性表面的广泛应用。作为背景知识,文章第2节介绍了浸润性领域的基本概念和飞秒激光微加工技术。接下来,根据不同浸润性的特点,将飞秒激光实现的不同浸润性分为四大类,包括基本极端浸润性(第3节)、特殊液体浸润性(第4节)、功能极端浸润性(第5节)和智能可调浸润性(第6节)。分别介绍了飞秒激光实现的超亲水与超疏水性、超疏油性、水下超疏气和超亲气性、液体灌注超滑表面、水下超疏聚合物性、超疏液态金属性、可调黏滞性、各向异性浸润性、刺激响应-可逆变换浸润性等特殊浸润性质。第7节列举了飞秒激光制备的特殊浸润性材料的一些典型应用。最后,简要总结了飞秒激光在调控材料表面浸润性方面所具有的突出优势,同时讨论了飞秒激光调控表面浸润性技术当前所面临的挑战以及未来的前景(第8节)。

2 浸润性相关基本理论以及飞秒激光微加工技术

2.1 基本浸润模型

当液滴接触固体表面后,固/液/气界面处会形成三相接触线。伴随着液滴的铺展,三相接触线向外快速扩展,直到液滴形状达到平衡状态。此时,在三相接触线处,固液接触面与液滴的切线所形成的夹角通常被称为液滴的“静态接触角”(CA,一般在公式中记为θ),如图1(a)所示15-7。以水滴为例,一般地,若接触角<90°,说明表面表现为亲水性。在接触角≤10°的极端情况下,表面表现为超亲水性。在超亲水状态下,液滴几乎可以平铺在材料表面,即完全润湿固体表面。相反,当接触角>90°时,表面表现为疏水性。在接触角≥150°的极端情况下,表面表现为超疏水性。水滴在超疏水表面上一般会蜷缩成小球状,不会润湿材料表面。将固体表面逐渐倾斜,直到表面上的液滴可以滑落或滚动下去,此时的倾斜角被称为“滑动角”或“滚动角”(SA),如图1(b)所示。接触角反映了固体表面的静态浸润状态,而滚动角则反映了液滴与固体表面间的动态浸润性,即表面的黏滞性。通常,大的滚动角说明固体表面对液滴具有高的黏附性,小的滚动角说明液滴在固体表面的黏附性很小。与滚动角类似,有时也用接触角滞后(CAH,即前进角与后退角之差)来描述表面黏滞性的大小,其中前进角和后退角分别为液滴向外扩展和向内收缩时的接触角。

图 1. 浸润性相关的基本概念及几种典型的浸润模型。(a)平滑表面上的液滴及接触角;(b)滚动角;(c)~(e)粗糙微结构上的液滴接触:Wenzel接触态(c),Cassie接触态(d),Wenzel-Cassie过渡接触态(e);(f)水下Cassie接触态

Fig. 1. Basic concepts related to surface wettability and several typical wettability models. (a) Droplet on smooth surface and contact angle (θ); (b) Sliding angle (SA); (c)-(e) Droplet contact on rough microstructure: Wenzel contact state (c), Cassie contact state (d), and Wenzel-Cassie transition contact state (e); (f) Underwater Cassie contact state

下载图片 查看所有图片

液滴在固体表面上的浸润行为主要由三种接触模型(杨氏接触、Wenzel接触和Cassie接触)来描述193567。理想平滑表面上的液滴处于杨氏接触状态,如图1(a)所示。液滴的浸润状态主要受界面能的影响,液滴的接触角(θ935可以表达为

cosθ=γSA-γSLγLA

式中:γSAγSLγLA分别为固/气、固/液、液/气界面间的表面自由能(即界面能)。

杨氏模型只适用于理想平滑表面上的液滴浸润情形。然而,多数材料表面通常都有一定的粗糙程度。Wenzel首先考虑了粗糙结构对浸润性的影响。当固体表面的微结构被液体润湿时,粗糙结构能够显著增大液体与固体表面的接触面积,如图1(c)所示。通过引入粗糙因子(R,真实表面积与投影面积的比率),Wenzel进一步改进了杨氏公式。处于Wenzel接触状态的液滴完全刺入或填充进材料表面粗糙结构之间,其表观接触角(θ*68可以表达为

cosθ*=R(γSA-γSL)γLA=Rcosθ

式中:θ为液滴在对应平滑表面上的接触角,即杨氏接触角或本征接触角。由于粗糙表面的真实表面积大于其表观表面积(摄影面积),即R>1,由式(2)可以推导得到:粗糙微结构能够增强固体表面的本征浸润性。简而言之,粗糙结构使得亲水材料更亲水、疏水材料更疏水。

还存在另外一种情形,即:液滴无法刺入粗糙微结构的凹陷部分。如图1(d)所示,液滴相当于坐落在一种固/气复合界面上。这种接触模型最早由Cassie等提出来。粗糙结构的间隙被空气填充,在液滴与材料表面之间形成了一层被俘的空气层(气垫)。处于Cassie接触态的液滴的表观接触角(θ*69满足

cosθ*=fcosθ+f-1

式中:θ为杨氏接触角;f为固体表面与液滴接触部分的面积分数。被俘的空气层能够显著减小液体与固体表面的接触面积,并且使得液滴的三相接触线不连续,因而在这种接触状态下材料表面对液滴表现出极低的黏滞性。

除了以上三种典型的接触模型,也衍生出了一些其他重要的接触情形。例如,液体可以部分刺入粗糙结构之间,使液滴的接触状态介于Wenzel态和Cassie态之间,这种接触模型通常被称为“过渡接触态”或“中间接触态”1767,如图1(e)所示。处于过渡接触态的表面对液滴的黏滞性介于极低和极高之间。根据液滴刺入的程度,可以实现黏滞性从低到高的连续设计。此外,水下固体表面上油滴和气泡的浸润性也是当前的主要研究方向之一。水环境润湿粗糙微纳结构能够形成对油滴和气泡的排斥作用,这种接触模型是Cassie接触的水下版本,也被称为“水下Cassie接触态”2035,如图1(f)所示。

2.2 飞秒激光微加工技术

激光是20世纪最伟大的发明之一。超快激光,如飞秒激光,具有超短脉冲宽度和超高峰值功率密度的特点60-62。近年来,飞秒激光逐渐发展成为现代极端制造和超精密制造领域的重要工具之一。当飞秒激光脉冲聚焦在比头发丝直径还小的空间区域时,光强可以超过1022 W/cm2量级。超高的峰值功率使得飞秒激光与固体表面的相互作用与传统激光作用方式有很大不同。与传统激光加工技术相比,飞秒激光微加工具有许多优势,例如热效应小、空间分辨率高、非接触加工、可加工材料广泛、灵活性强等63-66。飞秒激光可以直接将材料激发到等离子体状态,从而对材料进行“冷”刻蚀。该过程极大地降低了激光烧蚀的光热效应,而光热效应通常会导致加工精度低和材料选择性差等问题。飞秒激光与固体表面的相互作用是一个复杂的非线性过程。在聚焦光斑中心附近的有限区域内,只有激光能量高于多光子反应阈值的区域才能被激光烧蚀,因而飞秒激光可以实现对材料的超精细微纳米加工。非线性过程(如多光子吸收)使得飞秒激光可以烧蚀广泛的材料,无论是不透明材料还是透明材料,如半导体、各种金属、聚合物、玻璃、陶瓷、生物材料(如组织)等60-64。目前,飞秒激光微加工技术已被成功应用于高质量、高精度的表面微纳米加工领域,如钻孔、切割、纳米光栅制备、表面图案/纹理化等。

图2(a)~(c)所示为几种典型的飞秒激光加工系统示意图70-72图2(a)是结合了高速扫描振镜的加工系统示意图。将飞秒激光引入振镜中,再经过场镜将激光聚焦在样品表面。在这种加工系统中,样品位置保持不动,通过振镜内部一对高速转动的反射镜控制激光焦点在样品表面移动。图2(b)是普通透镜结合二维移动平台运动的加工系统示意图。加工材料通常被固定在二维移动平台上,高能激光束通过透镜(例如平凸透镜、柱面镜等)直接聚焦在样品表面。通过二维平台的移动,激光焦点在样品表面产生相对移动。图2(c)是结合了显微物镜和三维移动平台的高精密加工系统示意图。同样,在该系统中,样品固定在三维移动平台上,物镜将激光聚焦在样品表面。通过移动平台的运动产生激光焦点的相对位移。以上这三种聚焦系统各有优缺点。例如,振镜结合场镜聚焦系统可以使激光焦点在非常高速的状态下移动,因而加工效率是三种系统中最高的。此外,图案化设计更为方便,只要在操控软件中设计好加工图案,程序软件便可以控制激光焦点的移动,按设计图案进行加工。但是,通过场镜聚焦的焦斑直径相对较大,因而该系统不擅长精细加工。此外,加工区域大小会受到聚焦系统“视场”大小的限制,一般无法实现大面积加工。如果要制备大面积的微纳结构,就需要结合拼接技术。至于物镜聚焦系统,通过不同放大倍数的物镜,可以将激光束聚焦为不同大小的光斑。尤其是结合显微镜系统的加工装置,不同倍数的聚焦物镜很容易切换。使用高倍物镜或油镜,甚至可以实现纳米级加工。然而,焦点越小,覆盖指定区域所需要的扫描线就越多,所用加工时间就越久,即加工效率越低。这种物镜系统通常被用于精密微纳加工。普通透镜聚焦系统是介于振镜聚焦系统与物镜聚焦系统之间的一种过渡系统,该系统比振镜系统的加工精度高但不及物镜系统,比物镜系统的加工效率高但不及振镜系统。

图 2. 典型的飞秒激光加工系统。(a)基于高速扫描振镜的加工系统70;(b)普通透镜结合二维移动平台运动的加工系统71;(c)结合显微物镜和三维移动平台的高精密加工系统72;(d)激光逐行扫描方式;(e)飞秒激光与物质相互作用示意图

Fig. 2. Typical femtosecond laser processing systems. (a) Machining system based on the high-speed scanning galvanometer[70]; (b) combination of an ordinary lens and a two-dimensional moving platform[71]; (c) combination of a microscopic objective lens and a three-dimensional mobile platform[72]; (d) line-by-line laser scanning manner; (e) schematic diagram of femtosecond laser interaction with matter

下载图片 查看所有图片

为了在材料表面获得均匀的微纳结构,通常利用聚焦激光束进行逐行扫描,使激光焦点对整个材料表面进行烧蚀和覆盖。激光逐行扫描的方式如图2(d)所示。飞秒激光与物质的相互作用是一个非线性过程73-75。当聚焦的飞秒激光脉冲作用在材料(以硅为例)表面时,非线性吸收过程(如多光子吸收)会触发多光子电离和雪崩电离。部分激光能量被电子吸收后进一步从电子转移到晶格,然后扩散到材料中。随着激光能量的吸收,激光聚焦区域的温度极高,甚至会高于5000 K。另外,产生的等离子体被局限在一个非常小的区域,导致该区域具有非常高的等离子体压力。随着超高温、超高压的等离子体瞬间膨胀并从烧蚀点爆发出去,被电离的材料随之从基底表面喷射从而被移除。烧蚀材料的喷溅造成了材料表面的永久损伤,并在基底上产生了各种粗糙的表面微结构,如图2(e)所示。随着部分喷溅的熔融颗粒落回材料表面并凝固,更精细的纳米突出物(如纳米颗粒、纳米绒毛等)进一步自组装覆盖在烧蚀表面上,该过程通常被称为“再凝固”或“重结晶”或“重铸”。因而,飞秒激光作用后,材料表面上会形成各种微纳米多级结构。

近年来,飞秒激光微加工技术被广泛应用于表面科学领域,用于在材料表面设计和制备各种微米甚至纳米结构。通过简单的一步激光扫描烧蚀,可以在不同种类材料表面直接构建出各种仿生多级粗糙微结构。所形成微结构的形貌可以通过改变激光加工参数(如激光能量、扫描速度、扫描间距、激光偏振等)以及加工环境(如空气环境、液体环境、特殊气体环境等)来简单地进行设计调整。此外,激光加工位置和扫描轨迹可以由计算机程序精确控制,因而不需要昂贵的掩模板,并且可以按需设计制备出各种二维微图案和三维微结构76-77,如图3所示。特别地,飞秒激光可以作用于任意给定的材料,能够在这些材料表面直接制备出不同类型的微米/纳米结构。此外,飞秒激光也擅于微纳结构的精细设计与调控。除了材料本身的化学属性之外,表面微纳结构也决定着材料的浸润性,因而通过飞秒激光在材料表面构建特殊的微米尺度、纳米尺度结构,可以获得各种各样的独特浸润性78-82。相比于传统微加工方法,飞秒激光在设计和改性材料表面浸润性方面展现出了巨大优势,尤其是在普适性和灵活性方面。

图 3. 飞秒激光制备的各种二维和三维图案化微结构76-77

Fig. 3. Various two-dimensional and three-dimensional patterned microstructures prepared by femtosecond laser processing[76-77]

下载图片 查看所有图片

3 基本极端浸润性

3.1 超亲水性和超疏水性

3.1.1 超亲水表面

若液滴能够在材料表面完全铺展开,即完全润湿材料表面,则这样的表面被称为“超亲水表面”(接触角≤10°)。根据Wenzel公式,粗糙微纳结构可以使亲水材料更亲水68。因而,设计制备超亲水表面需要结合亲水材料和粗糙微结构这两个必要条件,通常的做法是在亲水基底材料表面构建足够粗糙的微纳结构。由于飞秒激光具备在任意给定材料表面构建微纳结构的能力,因而通过飞秒激光作用可以使多数本征亲水材料(例如金属、硅、玻璃等)表面实现超亲水性。例如,Vorobyev等83利用高能量飞秒激光脉冲在不同金属基底上构建了微纳粗糙结构。当将激光脉冲聚焦在铂片表面并基于等间距逐行扫描的方式扩展激光结构化区域后,扫描线便在金属样品表面形成了平行的微沟槽结构,如图4(a)所示。沟槽的周期为100 µm,与激光扫描线间距一致。整个微沟槽表面上覆盖着多孔的微米/纳米结构,如图4(b)所示。同时,大量的纳米凸出物及凹腔结构聚集在微米尺度结构上,如图4(c)、(d)所示。这种激光诱导的微纳米多级结构使得结构化金属表面呈现黑色,也被称为“黑色金属”。如图4(e)所示,当将水滴或甲醇液滴滴落在激光处理的铂片表面后,液滴能够迅速沿着微沟槽铺散开。铺展开的液滴润湿了尽可能大的固体表面积,说明激光结构化金属表面显示出了优异的超亲水性。基于同样的处理方式,飞秒激光也可以赋予其他金属超亲水性。

图 4. 飞秒激光赋予不同亲水基底材料超亲水性。(a)~(d)激光在铂片上制备的微纳多级结构83;(e)液滴在激光作用后的铂片表面铺散开83;(f)激光在硅表面上制备的微结构84;(g)液滴在结构化硅表面铺展84;(h)激光在玻璃表面上制备的微结构85;(i)液滴在结构化玻璃表面铺展85

Fig. 4. Endowing different hydrophilic substrates with superhydrophilicity by femtosecond laser processing. (a)-(d) Hierarchical micro/nanostructures on platinum sheet prepared by laser ablation[83]; (e) droplet spreading out on the laser-structured platinum surface[83]; (f) femtosecond laser-induced microstructure on the silicon surface[84]; (g) droplet spreading out on the structured silicon surface[84]; (h) femtosecond laser-induced microstructure on the glass surface[85]; (i) droplet spreading out on the structured glass surface[85]

下载图片 查看所有图片

Vorobyev等84进一步将微纳沟槽结构制备在了亲水的硅表面上,如图4(f)所示。液滴也能够完全润湿结构化表面。将液滴滴在激光加工表面后,液滴能够在0.6 s内向前移动22 mm。即便是将硅表面垂直放置,液体也能够逆重力向上润湿所制备的超亲水表面。当水滴接触竖立放置的硅表面底部时,水滴立即高速向上扩散,如图4(g)所示。玻璃表面本身也是亲水的,水滴在光滑玻璃表面上的接触角为15°。当将微纳结构制备在玻璃表面上时(如图4(h)所示),水滴可以完全润湿玻璃表面上的微纳结构(如图4(i)所示),水滴的接触角接近于0°85

以上结果表明,飞秒激光诱导的微/纳米结构能够使亲水的金属、硅和玻璃表面呈现超亲水状态。液体能够在激光结构化表面完全铺展开并润湿表面结构,这主要是由于激光诱导的粗糙结构显著地增大了液体与固体表面的接触面积,增强了材料本身的亲水性。因而,在亲水基底上通过飞秒激光烧蚀产生微纳多级结构,可以使基底表面轻松获得超亲水特性。超亲水性也是实现水下超疏油、水下超疏气、水下超疏聚合物性等一系列水下极端浸润性质的基础。

3.1.2 超疏水表面

1)荷叶的超疏水性

荷叶出淤泥而不染,在亚洲,一直被认为是圣洁的象征。雨滴和露珠在荷叶表面能够蜷缩成小球状86,如图5(a)所示。当荷叶稍微倾斜或随风摇摆时,液滴便会从荷叶上滚落下去,并带走荷叶表面的污染物。这种现象被称为“自清洁效应”,亦被称为“荷叶效应”14-15。这种自清洁功能来源于荷叶表面出色的防水功能,即超疏水性。水滴在荷叶表面的接触角可以达到160°(如图5(d)所示),而滚动角只有2°(如图5(e)所示)。研究发现,荷叶表面并不是光滑的,而是覆盖满了微纳米复合结构86-87,大量直径约为10 µm的乳突状结构随机分布在荷叶表面(如图5(b)所示),每个乳突上又分布着直径约为120 nm的纳米棒状突起结构(如图5(c)所示),微米乳突和纳米突起结构形成了一种微纳分级粗糙结构。此外,整个荷叶表面还覆盖着一层低表面能的疏水蜡质晶体层。正是由于微纳米分级结构和低表面能蜡质晶体层的协同作用赋予了荷叶超疏水性,水滴才能够在荷叶表面处于Cassie接触态,如图5(f)所示。分级微纳结构将水滴托起,使水滴只能够接触微纳结构的顶部,从而在液滴与微纳结构之间形成了一层被俘的空气层(气垫层)。该空气层有效地减小了水滴与荷叶表面的接触,使荷叶展现出出色的超疏水性,即防水性。

图 5. 荷叶的超疏水性8687。(a)荷叶;(b)(c)荷叶表面上的微纳结构;(d)水滴在荷叶表面上的形状;(e)水滴在荷叶表面滚动;(f)水滴在荷叶表面的浸润状态示意图

Fig. 5. Superhydrophobicity of lotus leaves[8687]. (a) Lotus leaves; (b)(c) surface microstructures on lotus leaf; (d) shape of a water droplet on the lotus leaf; (e) water droplet rolling on the surface of the lotus leaf; (f) diagram of the wetting state of a water droplet on the surface of lotus leaf

下载图片 查看所有图片

受荷叶超疏水性的启发,人们通常结合表面微纳结构和低表面能两方面因素来设计制备超疏水表面。对于本征疏水材料,只需要在材料表面制备合适的粗糙微纳结构,便可实现超疏水性;而对于本征亲水材料,除了需要在表面构建多级微纳结构外,还需要对表面进行低表面能修饰才能获得超疏水性。

2)本征疏水材料

部分聚合物,如聚二甲基硅氧烷(PDMS),是本征疏水材料,即液滴在未处理的平滑材料表面上的接触角大于90°。由于这类材料本身已经具有低表面能的化学属性,因而只需要利用飞秒激光在这些材料表面构建出足够粗糙的微纳结构便可以实现超疏水性。Yong等88-91利用飞秒激光一步直写技术在PDMS表面制备了各种超疏水表面微结构。经过物镜(10×,数值孔径为0.30)聚焦的飞秒激光(单脉冲能量为30 μJ,扫描速度为4 mm/s)在PDMS表面上移动时可以形成一条宽度为12.2 µm、深度为8.6 µm的微沟槽结构。通过逐行扫描的方法可以诱导出周期性微沟槽阵列。随着沟槽间距的减小,微沟槽逐渐靠近。最终,相邻激光诱导的沟槽相互重叠,在材料表面形成了一种均匀的粗糙微结构,如图6(a)和图6(c)所示。所制备的结构单元呈珊瑚状,尺寸约为几微米,微米结构上还修饰着纳米凸出物,如图6(b)所示。水滴在这种均匀的分级微纳米结构表面上的接触角为157.5°,如图6(d)所示。当将表面倾斜1°时,水滴可以快速滚落下去,即滚动角为1°,如图6(i)所示。因而,无须进行任何化学修饰,仅激光处理后的PDMS表面便拥有了超疏水性。

图 6. 飞秒激光制备的超疏水PDMS和PTFE表面。(a)(b)飞秒激光在PDMS表面上制备的微结构91;(c)PDMS表面上微结构的三维和横断面轮廓图91;(d)激光结构化PDMS表面上的水滴91;(e)~(g)飞秒激光在PTFE表面上制备的微结构92;(h)飞秒激光作用后PTFE表面的浸润性,包括液滴的形状和滚动瞬间92;(i)水滴在倾斜1°的超疏水PDMS表面上滚落的过程91;(j)水滴在超疏水PTFE表面上连续弹跳的过程92

Fig. 6. Superhydrophobic PDMS and PTFE surfaces prepared by femtosecond laser. (a)(b) Femtosecond laser-induced microstructures on the PDMS surface[91]; (c) three-dimensional and cross-sectional profiles of the microstructures on the PDMS surface[91]; (d) water droplet on the structured PDMS surface[91]; (e)-(g) femtosecond laser-induced microstructures on the PTFE surface[92]; (h) wettability of the structured PTFE surface after femtosecond laser processing, including droplet shape and rolling moment[92]; (i) rolling process of a water droplet on the superhydrophobic PDMS surface with tilt angle of 1°[91]; (j) continuous rebounding process of a water droplet on the superhydrophobic PTFE surface[92]

下载图片 查看所有图片

聚四氟乙烯(PTFE)也是一种典型的疏水材料。水滴在平滑PTFE表面上的接触角为111.5°。通过飞秒激光烧蚀,也可以在PTFE表面形成大量的微孔和微凸起结构,如图6(e)~(g)所示92-94。微凸起的尺寸为300 nm 到 2 µm。所制备表面也显示出优异的超疏水性以及对水滴极低的黏附性,水滴在该表面上的接触角为155.5°,滚动角为2.5°,如图6(h)所示。自由落体的液滴撞击所制备超疏水表面后能够反弹起,并且可以在该表面上弹跳多次,如图6(j)所示。由于PTFE材料的化学稳定性非常好,因而飞秒激光在PTFE表面上实现的超疏水性非常稳定。将pH为1~13的不同酸性和碱性液滴滴加在所制备的表面上,液滴的接触角均大于150°,滚动角均小于10°92。因此,所制备的超疏水表面对强酸和强碱性溶液也具有排斥性。即便是将表面在200 ℃下加热24 h,其超疏水性也没有丝毫减弱。此外,该超疏水表面还能够抵抗腐蚀性液体的侵蚀,即使是将其浸泡在40%氢氟酸溶液、浓硫酸、10 mol/L氢氧化钠溶液中,甚至是浸泡在王水溶液中,其超疏水性依旧能长久保持93。这种耐久性得益于PTFE基底本身的化学惰性以及激光诱导的超疏水微纳结构。化学惰性使得外界环境对PTFE化学组成和形貌的侵害速度很慢;而超疏水微结构通过显著减小腐蚀性液体与材料表面的接触面积,进一步放大了该延缓作用。作为两种典型的本征疏水材料,PDMS和PTFE是最典型的被用于获得超疏水性的基底。

3)本征亲水材料

硅、多数金属材料、玻璃等都是本征亲水性材料,即水滴在这些平滑材料表面上的接触角小于90°。飞秒激光诱导的微纳结构一般会使亲水材料更加亲水,甚至呈现超亲水状态。因而,激光处理后,往往需要进一步降低所制备微纳结构的表面能,使结构化表面转变为超疏水状态。所采用的手段是对结构化表面进行低表面能化学修饰,使最终形成的表面结合了激光诱导的微纳结构和低表面能的化学单分子层。目前使用最多的化学修饰物为各类氟硅烷、硫醇和硬脂酸溶液。

结合飞秒激光处理和低表面能化学修饰,可以使各种本征亲水基底获得超疏水性。例如,Baldacchini等95在SF6活性气体氛围下,利用飞秒激光在硅(100)表面制备了一种尖锥阵列微结构。在制备过程中,样品被放置在一个充满SF6气体的腔室内,激光束通过焦距为25 cm的平凸透镜聚焦在硅表面上。激光烧蚀可以在硅表面诱导出微纳结构,而且微结构的高度随着激光能量密度的增大而增大。当激光能量密度大于4.0 kJ/m2时,会形成相互分离的高深宽比凸起微结构。继续增大激光能量密度,可以获得均匀的尖锥阵列微结构,如图7(a)、(b)所示。经过氟硅烷修饰降低结构的表面能后,水滴在该表面上的接触角为160°(如图7(d)所示),接触角滞后<3°。因而,所获得的结构化表面表现出了优异的超疏水性以及极低的液体黏滞性。作为对比,水滴在仅经氟硅烷修饰的平滑硅表面(未经飞秒激光处理)上的接触角仅为115°,如图7(c)所示。类似地,Zorba等96-97也在SF6气体环境下利用飞秒激光在硅表面上制备了一种均匀的锥形尖刺阵列微结构(如图7(g)所示)。微尖锥的直径为10 µm,高宽比为4,尖锥上覆盖满了丰富的纳米结构(如图7(h)所示)。因为样品表面看上去非常黑(如图7(e)所示),所以这种分级粗糙微结构一般被称作“黑硅”结构。经氟硅烷修饰后,表面也显示出了超疏水性(如图7(f)所示)。

图 7. 在SF6活性气体环境下基于飞秒激光在硅表面上制备的超疏水微纳结构。(a)(b)飞秒激光诱导的微纳米结构95;(c)水滴在氟硅烷修饰的平滑硅表面上的形状95;(d)水滴在氟硅烷修饰的激光作用硅表面上的形状95;(e)飞秒激光制备的超疏水黑硅表面96;(f)水滴在超疏水黑硅表面上的形状96;(g)(h)黑硅表面上的微纳结构96

Fig. 7. Superhydrophobic micro/nanostructures on silicon surface prepared by femtosecond laser in SF6 active gas environment. (a)(b) Femtosecond laser-induced micro/nanostructures[95]; (c) water droplet on the smooth silicone surface modified with fluorosilane[95]; (d) water droplet on the fluorosilane-modified laser-structured silicon surface[95]; (e) femtosecond laser-prepared superhydrophobic black silicon surface[96]; (f) water droplet on the superhydrophobic black silicon[96]; (g)(h) micro/nanostructures hierarchical structures on black silicon surface[96]

下载图片 查看所有图片

SF6气体加工环境使得加工设备和操作步骤异常复杂。后来,Chen课题组98-101发展了在大气环境下直接利用飞秒激光在硅表面构建超疏水微纳结构的方法。他们通过物镜(20×,数值孔径为0.45)直接将飞秒激光聚焦在硅表面上,利用逐行扫描的方法(激光功率为15 mW,扫描速度为2 mm/s,扫描间距为2 µm)在硅表面上制备了一种微纳米两级结构。如图8(a)~(d)所示,硅表面上形成了微山状的周期性微纳结构,微山状结构的直径和高度分别为6 µm 和2.9 µm,其表面上也分布着大量纳米凸出物。测得表面粗糙度达到了2.46 µm。经过氟硅烷修饰后,该表面显示出超疏水性。水滴在所制备表面上的接触角为158°(如图8(e)、(f)所示),滚动角为4°,液滴可以在该超疏水表面上多次弹跳。与荷叶表面的超疏水性类似,水滴在飞秒激光制备的极低黏滞超疏水表面上也处于Cassie接触状态,液滴只接触微纳结构的顶部。

图 8. 在空气环境中基于飞秒激光加工在硅表面上制备的超疏水微纳结构101。(a)(b)飞秒激光诱导的周期性微山阵列结构;(c)微山结构表面上的纳米结构;(d)横断面结构;(e)(f)水滴在所制备超疏水表面上的形状

Fig. 8. Superhydrophobic micro/nanostructure on silicon surface obtained by femtosecond laser processing in air environment[101]. (a)(b) Femtosecond laser-induced periodic micromountain array microstructure; (c) nanostructures on the micromountain surface; (d) cross-sectional microstructure; (e)(f) shape of water droplet on the laser-prepared superhydrophobic surface

下载图片 查看所有图片

类似于超疏水硅表面的制备,超疏水性也可以通过飞秒激光微加工技术在其他本征亲水性材料表面上实现。Wu等102利用飞秒激光对AISI 316L不锈钢表面进行了烧蚀,结果发现:在低能量密度(0.08 J/cm2)下,不锈钢表面上只形成了周期性的纳米条纹结构,即Ripples微结构或激光诱导周期性表面结构(LIPSS),如图9(a)所示;随着激光能量密度增加,更大的凸起结构开始形成,当激光能量密度达到2.4 J/cm2时,分离的凸起演变成直径为几微米的锥状尖刺结构,尖刺顶部依然覆盖着典型的LIPSS结构,构成了一种分级的微米/纳米尺度结构,如图9(b)所示。当对这些表面进行低表面能化学修饰后,平滑不锈钢表面上水滴的接触角为113.0°,表面呈现为弱的疏水性。对于单一的纳米LIPSS结构表面,水滴的接触角为150.3°(如图9(a)插图所示),但是水滴无法在这样的表面上滚落下去。只有微纳复合结构表面才显示出超疏水性和对液滴极低的黏附性,水滴的接触角为166.3°(如图9(b)插图所示),滚动角为4.2°。Vorobyev等103利用飞秒激光(能量密度为9.8 J/cm2)在金属铂表面上制备了一种微纳复合结构(如图9(d)~(f)所示),金属表面呈现黑色、不反射光状态,因而也被称作“黑色金属”,如图9(c)所示。将制备的表面暴露在空气中足够长时间后,由于表面持续从空气中吸附低表面能有机物质,最终粗糙的黑色铂表面显示出超疏水性,如图9(i)所示。水滴该表面上的接触角为158°,并且很容易在倾斜4°的表面上滚落下去。基于同样的处理过程,超疏水微纳结构也可以制备在黄铜(如图9(g)所示)和钛(如图9(h)所示)表面上,所用飞秒激光能量密度分别为3.9 J/cm2和7.6 J/cm2。Yong等104基于飞秒激光加工方法制备了一种超疏水锌表面,该表面具有可切换的超疏水性。通过激光处理在锌基底表面上形成了典型的微米/纳米分级结构,如图9(j)所示。此外,氧化过程也伴随着激光烧蚀的发生。激光烧蚀表面上的氧质量分数达到了32.4%,说明在原始锌基底上覆盖了一层ZnO薄层。黑暗存储后的粗糙ZnO微结构显示出超疏水性,所测水滴的接触角为159.5°(如图9(j)插图),滚动角为8°。

图 9. 飞秒激光制备的不同超疏水金属表面,其中插图为水滴在对应表面上的形状。(a)低激光能量密度下在不锈钢表面上形成的周期性纳米条纹结构102;(b)高激光能量密度下在不锈钢表面上形成的微纳米分级结构102;(c)飞秒激光制备的黑色铂金属表面103;(d)~(f)飞秒激光在铂表面上制备的微纳结构103;(g)(h)飞秒激光在黄铜(g)和钛(h)表面上制备的微纳结构103;(i)飞秒激光制备的超疏水黑色金属的防水性103;(j)飞秒激光在锌表面上制备的ZnO多级微结构104

Fig. 9. Different superhydrophobic metal surfaces prepared by femtosecond laser, where the insets show the shape of a water droplet on the corresponding surface. (a) The laser-induced periodic nanoripples on stainless steel surface prepared at low laser energy density[102]; (b) micro/nanoscale hierarchical structure on stainless steel surface prepared at high laser energy density[102]; (c) black platinum surface prepared by femtosecond laser processing[103]; (d)-(f) femtosecond laser-induced micro/nanostructures on the platinum surface[103]; (g)(h) femtosecond laser-induced micro/nanostructures on copper (g) and titanium (h) surfaces[103]; (i) water resistance of superhydrophobic black metals prepared by femtosecond laser[103]; (j) femtosecond laser-prepared hierarchical ZnO microstructure on zinc surface[104]

下载图片 查看所有图片

Zhou等105通过重复的激光扫描在K9玻璃表面上制备了两级粗糙微光栅沟槽结构,沟槽的深度、宽度及凸脊宽度分别为50 µm、210 µm和20 µm,同时在微沟槽表面上形成了均匀且更精细的亚微米结构。经低表面能修饰后,结构化玻璃表面呈现超疏水性,所测水滴接触角为152.3°,滚动角为4.6°。Lin等106在石英玻璃表面上通过飞秒激光逐点烧蚀制备了一种周期性的微阱阵列结构,如图10(a)所示,微阱的直径为20 µm,间距为30 µm。微阱的内部由亚微米波纹结构构成。经过氟硅烷修饰后,所制备玻璃表面不但具有超疏水性(如图10(b)所示),而且保持着高的透明性(如图10(c)所示)。在可见光及近红外波段,该超疏水玻璃的透明度高于92%,如图10(d)所示。适量的微阱结构及内部自组装的纳米结构为实现超疏水性提供了必要的粗糙度,同时微阱之间充足的未烧蚀区域(超过65%)保证了激光结构化玻璃表面的高透光性。

图 10. 飞秒激光制备的透明超疏水玻璃表面106。(a)飞秒激光制备的分级微阱阵列结构;(b)超疏水玻璃表面上的水滴;(c)(d)超疏水玻璃的高透明度

Fig. 10. Transparent superhydrophobic glass surface prepared by femtosecond laser[106]. (a) Hierarchical micro-well array structure prepared by femtosecond laser; (b) shape of a water droplet on the superhydrophobic glass; (c)(d) high transparency of the superhydrophobic glass

下载图片 查看所有图片

在亲水性聚合物表面上,也可以通过上述方法获得超疏水性。例如,环氧树脂是一类典型的亲水聚合物材料,因为这些材料表面上有丰富的亲水基团。Bai等76107利用飞秒激光刻蚀的方法,在环氧树脂表面上制备了微柱子阵列结构或周期性微沟槽结构。激光刻蚀产生了微米级的三维结构,同时激光作用过程中自发地在微柱子或微沟槽表面上修饰了精细的纳米结构。经氟硅烷修饰后,这些聚合物表面也具有了出色的超疏水性。

3.2 超疏油性

尽管多数超疏水表面能够排斥水,但有机液体的表面张力比水低很多,因而这些超疏水表面往往会被有机液体润湿。能够排斥油滴的表面被称为“超疏油表面”,油滴在其表面上的接触角≥150°35108-111。超疏油表面可以排斥表面张力低至20~30 mN/m的有机液体。制备超疏油表面比制备超疏水表面更加困难。Tuteja等112-113首先从理论和实验角度证明了内角(re-entrant)结构对于实现空气中超疏油性的关键作用。该研究工作推动了超疏油表面制备技术的快速发展,启发人们可以通过设计各种类型的内角微结构来获得超疏油表面。此外,Liu等20发现了鱼鳞表面在水下具有超疏油性的奥秘,开启了超疏油性研究的另一条路线。空气中超疏油表面与水下超疏油表面的制备原理和制备方法完全不同,因而本节将分开对其进行介绍。

3.2.1 空气中的超疏油表面

在空气中实现超疏油性往往要比实现超疏水性难很多。有趣的是,自然界中的弹尾虫具有防止有机液体浸润其表皮的能力,如图11(a)所示114-116。研究发现,弹尾虫的表皮上布满了类似蘑菇状的内角微结构,大量的刚毛和菱形网格结构分布在表皮上(如图11(b)所示),菱形网格由相互连接的纳米颗粒组成(如图11(c)所示)。山脊结构和纳米颗粒结构都呈现向内的悬垂形状,形成了内角曲率。正是这种内角微纳结构赋予了弹尾虫表面超疏油的特性。通俗地讲,内角结构就是一种上大下小(顶大底小)的微纳结构,例如蘑菇状或“T”字形微结构。

图 11. 弹尾虫的超疏油表面以及内角微结构对于实现超疏油性的重要性。(a)弹尾虫116;(b)(c)弹尾虫表面的微纳结构116;(d)~(f)低表面张力液体在不同类型微结构上的浸润状态35

Fig. 11. Superoleophobic surface of springtail and the importance of re-entrant microstructure for achieving superoleophobicity. (a) Springtail[116]; (b)(c) micro/nanostructures on the surface of Springtail skin[116]; (d)-(f) wetting states of low surface-tension liquids on different types of microstructures[35]

下载图片 查看所有图片

Tuteja等112-113首先指出了内角微结构对于制备超疏油表面的重要性。对于表面张力较低的液体,如油和有机溶剂,其在平滑表面上的杨氏接触角一般小于90°(即θ<90°)。如图11(d)所示,对于局部几何角(ψ)大于液体本征接触角(ψ>θ)的微纳结构来说,当液体接触其表面后,处于微纳结构之间的弯液面所受到的牵引力的方向向下,该牵引力会促使液体进一步刺入固体表面的结构之间,使得液体完全润湿粗糙的表面微结构。相反,对于几何形貌满足ψ<θ的表面微结构(如图11(e)所示),弯液面所受到的牵引力方向向上,该牵引力会驱使液/气界面退回到微结构的顶部,最终形成一种固/液/气的复合接触面(如图11(f)所示)。因此,对于低表面张力的液体,只有在θψ的条件下才有可能实现稳定的Cassie接触态。根据这一设计要求,只有具有内角曲面的倒梯形微结构(ψ<90°)才有可能支撑油在固体表面上处于Cassie状态(如图11(f)所示)。低表面张力的液体会润湿多数正梯形超疏水微结构(ψ>90°),因此,除了足够粗糙的微纳结构和严格的低表面能化学修饰外,要实现空气中的超疏油表面还需要引入内角曲率结构。这种超疏油表面甚至可以排斥表面张力为20~30 mN/m的油或有机液体,使油滴的接触角大于150°。

构建仿生的内角结构是飞秒激光制备超疏油表面的关键。飞秒激光诱导的双光子聚合(TPP)是一种经典的微观3D打印技术,可用来设计、制备各种三维微结构。Liu等117利用这种技术成功制备了具有三级内角的微结构,获得了超疏油表面。他们将基底材料浸入负光刻胶中,将激光聚焦于光刻胶中的基底表面,然后逐层直写出了所设计的微结构。激光焦点处的超高能量密度能够引发光刻胶发生自由基聚合反应,使激光焦点行进路径上的低聚物通过光诱导反应转变成致密的交联聚合物网络。激光打印结束后,通过丙二醇乙酸甲醚和异丙醇去除残留的光刻胶,便得到了图12(a)所示的微观结构。每一个结构单元由一个较大的帽子和一个较细的支柱组成。特别地,在帽子结构底面的边缘处,设计了稍微向下凸出的悬垂结构,该悬垂结构可以被视为第二级内角结构。悬垂结构底端向内凸出的矮台结构为第三级内角结构。多级内角曲率显著提高了低表面张力液滴对微结构的最大临界突破压力,也就是说液滴更难刺入微结构之间。双光子聚合技术制备的这种内角微结构对水和各种有机液体(如正十二烷、乙醇、己烷和硅油等)都具有极强的排斥作用,表面张力γ=12.0~27.1 mN/m,即便是具有极低表面张力的氟化溶剂(如正全氟辛烷)也不能润湿所制备的超疏油微结构。这种超疏油内角微结构可以制备在不同的衬底上,例如可以制备在刚性的硅片(如图12(b)所示)或柔性的聚酰亚胺薄膜(如图12(c)所示)上,使得这些表面不会被有机液体润湿。

图 12. 飞秒激光制备的空气中的超疏油表面。(a)飞秒激光双光子聚合制备的三级内角微结构117;(b)(c)制备在硅片(b)和聚酰亚胺薄膜(c)上的超疏油结构,插图展示了表面对正全氟辛烷液体的排斥性117;(d)基于飞秒激光诱导自生长过程制备蘑菇状微结构的原理118;(e)内角结构的自生长过程118;(f)所制备的蘑菇状微结构的形貌118;(g)自生长内角微结构的超疏油性118;(h)结合飞秒激光烧蚀和化学刻蚀方法制备超疏油微结构的流程119;(i)(j)所制备的微纳米复合结构119;(k)所制备结构的超疏油性119

Fig. 12. In-air superoleophobic surfaces prepared by femtosecond laser. (a) Three-level re-entrant microstructures prepared by femtosecond laser two-photon polymerization[117]; (b)(c) superoleophobic structures prepared on silicon wafer (b) and polyimide film (c), and the insets show the surface rejection to ferfluorooctane fluid[117]; (d) schematic diagram of the preparation of mushroom-like microstructure based on the laser-induced self-growth process[118]; (e) self-growth process of re-entrant microstructures[118]; (f) morphology of the prepared mushroom-like microstructure[118]; (g) superoleophobicity of the self-grown re-entrant microstructures[118]; (h) the process of preparing superoleophobic microstructures in combination with femtosecond laser ablation and chemical etching[119]; (i)(j) resultant micro/nanostructures[119]; (k) superoleophobicity of the resultant surface[119]

下载图片 查看所有图片

虽然飞秒激光双光子聚合技术可以按照设计的结构加工出完美的超疏油内角微结构,但该技术的加工效率通常较低,不能大规模制备超疏油表面微结构。这主要是由于每一个结构单元都需要激光焦点覆盖大量的扫描线和扫描面。除了双光子聚合技术外,飞秒激光很难直接在材料表面上直写出所需的内角结构,因而制备超疏油微结构需要借助于一些特殊的激光加工方法或者需要结合多种处理方式。Yang等118提出了一种通过飞秒激光诱导自生长过程制备蘑菇状微结构的方法,如图12(d)所示。基底材料选用厚度为150 μm的聚苯乙烯(PS)热缩膜,其上面贴合了一层厚度为10 μm的聚对苯二甲酸乙二醇酯(PET)膜,PET膜不具有热塑性。利用聚焦的飞秒激光在该双层膜上连续地沿圆圈路径进行重复扫描。初始的激光烧蚀使得圆圈内的PET/PS双层膜与整张膜基底分离,随着激光扫描圈数的持续增加,热积累越来越多,当温度超过PS的玻璃化转变温度后,圆圈内部双层结构中的PS部分便会发生热缩。在水平方向上,该PS圆柱的直径不断缩小,作为体积补偿,圆柱的高度会不断增大,圆柱看上去就像是沿着垂直方向持续生长,如图12(e)所示。然而,PET盖子不会发生收缩,最终形成了直径较下面柱子直径更大的帽子结构,如图12(f)所示。因此,通过激光的持续烧蚀,可以获得一种自生长的内角微柱结构。制备单个这样的结构单元只需要0.36 s。所制备的微柱阵列的尺寸(如帽子直径、柱间距和柱高度)可以通过控制激光扫描路径和圈数来精确调节。该表面进一步经过氟化处理和喷涂纳米颗粒结构后,能够排斥表面张力低至27.5 mN/m的液体,在空气中显示出了优异的超疏油性,如图12(g)所示。

Han等119基于飞秒激光复合加工方法制备了超疏油表面,该方法结合了飞秒激光烧蚀和化学刻蚀方法,如图12(h)所示。首先在铜板上利用飞秒激光沿“井”字形路径扫描40遍。随着激光扫描路径上材料的去除,网格之间未烧蚀区域形成了均匀的微锥阵列。微锥的高度可达50 µm,而间距(40 µm)和激光扫描行间距一致。此外,激光烧蚀过程使得微锥结构表面上覆盖了一层尺寸为50~500 nm的纳米颗粒团簇,其主要成分是Cu2O。由于缺乏内角结构,即使这种微纳复合结构经过低表面能氟硅烷修饰后,依然不足以实现超疏油性。进一步,将激光处理后的铜片浸泡在含2.5 mol/L NaOH 和 0.13 mol/L(NH42S2O4的溶液中,时间为20 min。结果发现,采用这种化学方法处理后,一种浓密的纳米草结构生长在微锥表面,如图12(i)、(j)所示。纳米草由CuO构成,厚度小于10 nm,宽度为40~80 nm。纳米草带一层一层地堆叠起来,形成了多孔特征,具有大量的局部内角几何形状。另外,在微锥侧面凸起的纳米结构构成了许多横向生长的结构,显著丰富了内角几何形状。这种采用飞秒激光复合方法制备出的分级结构(侧向纳米草覆盖在微锥结构上)经过全氟癸基三甲氧基硅烷修饰后,显示出了超疏油性(如图12(k)所示),水滴和十二烷液滴在该表面上的接触角均大于150°。

由于水的表面张力高于油滴,所以多数空气中的超疏油表面也具有超疏水性。一般地,将同时具有超疏水性和超疏油性的表面称为“超双疏表面”或“超全疏表面”35110-111。当然,也存在少数超疏油表面具有超亲水性的特例,这些表面的微结构上设计了特殊的亲水基团120

3.2.2 水下超疏油性

鱼可以在水里自由游曳,即使是在被油污染的水域里也能够保持鱼鳞的清洁,不被油污染。Liu等20发现这种抗油性来源于鱼鳞在水下所具有的超疏油性。鱼的表皮上覆盖着扇形鱼鳞(如图13(a)所示),鱼鳞由亲水性的磷酸钙和蛋白质组成,百微米大小的山丘状凸起结构呈辐射状有序地排列在鳞片表面(如图13(b)、(c)所示)87,每个微山结构的表面上进一步点缀着丘疹状纳米结构(如图13(d)所示)。水下的油滴在鱼鳞表面能保持小球状,油滴的接触角为151.5°±2°,如图13(e)所示。同时,油滴也很容易滚离鱼鳞表面。这些结果表明鱼鳞在水环境中具有超疏油性。区别于前述空气中的超疏油性,这种特殊浸润性一般被称为“水下超疏油性”。图13(f)揭示了鱼鳞表面所具有的水下超疏油性的内在原因。鱼鳞由亲水性物质组成,在水下,鱼鳞表面的微结构会被水润湿;当油滴接触鱼鳞表面时,填充在鱼鳞微结构间的水对油滴具有排斥作用(这主要是由于极性的水分子与非极性的油分子之间存在相互排斥力),因而在油滴与鱼鳞表面之间形成了一层被俘的水垫,这一层水垫使得油滴只能接触鱼鳞表面微结构的顶部,进而使得油与鱼鳞的接触处于水下版本的Cassie状态。被俘水层有效减小了油滴与鱼鳞表面的接触面积,因此鱼鳞具有排斥油的功能,即具有水下超疏油性。鱼鳞的水下超疏油性是其粗糙的表面微观结构和具有高表面能的化学组成物质共同作用的结果。鱼鳞水下斥油功能的发现为实现超疏油表面开辟了一条新路径。受鱼鳞的启发,人们通过在材料表面构建亲水微纳结构获得了水下超疏油表面。一般地,超亲水表面在水下往往具有超疏油性。

图 13. 鱼鳞表面的水下超疏油性。(a)鱼鳞20;(b)~(d)鱼鳞表面的微观结构2087;(e)水下鱼鳞表面的油滴20;(f)水下油滴与鱼鳞表面微结构的接触模型

Fig. 13. Underwater superoleophobicity of fish scales. (a) Fish scales[20]; (b)-(d) microstructures on the surface of fish scales[20,87]; (e) oil droplet on the surface of fish scales underwater[20]; (f) contact model between oil droplet and the microstructure on fish scales surface underwater

下载图片 查看所有图片

Yong等121利用飞秒激光烧蚀使硅表面实现了水下超疏油性。在激光处理前,水滴在平滑硅表面上的接触角为60°,如图14(a)所示。亲水性的硅表面在水下呈弱疏油性,水下的二氯乙烷油滴在硅表面上的接触角为124.6°,如图14(c)所示。通过飞秒激光烧蚀在硅表面制备出分级粗糙微山结构(如图8(a)~(d)所示)后,样品表面的亲水性被增强到超亲水状态(如图14(b)所示)。当将激光结构化表面浸入水中并且滴加一滴油滴在该表面上时,油滴可以保持近似球形,所测接触角达到了159.4°(如图14(d)所示)。只需将表面稍微倾斜0.5°或者轻微晃动表面,油滴便可以在样品表面滚动,如图14(e)所示。可见,飞秒激光诱导的微纳结构赋予了硅表面水下超疏油性,使得硅表面在水环境中可以排斥油脂类液体。与鱼鳞表面类似,激光制备的超亲水微纳结构在水中会被水完全润湿,填充在粗糙结构间的被俘水层排斥油滴,阻止了油滴与硅表面的有效接触,从而使激光结构化表面具有水下超疏油性。Li等122分别在乙醇溶液和蔗糖溶液中利用飞秒激光烧蚀硅表面,获得了微锥体和微磨牙两类微纳结构。这两类粗糙硅表面在水下均表现出了优异的超疏油性,水下油滴在微锥体结构表面(在乙醇溶液中激光烧蚀)上的接触角为157.8°,在微磨牙结构表面(在蔗糖溶液中激光烧蚀)上的接触角为169.2°。

图 14. 飞秒激光结构化硅表面的水下超疏油性121。(a)空气中未处理表面上的水滴;(b)激光结构化表面上的水滴;(c)水下未处理表面上的油滴;(d)水下激光结构化表面上的油滴;(e)水下油滴在结构化表面上滚动的过程

Fig. 14. Underwater superoleophobicity of the femtosecond laser-structured silicon surface[121]. (a) Water droplet on the untreated surface in the air; (b) water droplet on the laser-structured surface; (c) underwater oil droplet on the untreated surface; (d) underwater oil droplet on the laser-structured surface ; (e) the process of underwater oil droplet rolling on the structured surface

下载图片 查看所有图片

玻璃是一系列水下光学器件的重要材料,然而其易被有机油脂物质污染,影响水下观测效果。Yong等123通过飞秒激光处理赋予了石英玻璃表面优异的水下超疏油性,如图15(a)所示。他们通过飞秒激光烧蚀在石英玻璃表面形成了大量几十到几百纳米大小的纳米颗粒结构(如图15(b)~(d)所示),纳米颗粒之间还形成了大量更精细的纳米孔隙和细缝结构。纳米结构修饰的玻璃表面在空气中是超亲水的,但在水下对一系列油(如二氯乙烷、氯仿、十六烷、原油、石油醚、芝麻油和石蜡液体等)都显示出超疏油性。例如,水下二氯乙烷液滴在所制备表面上的接触角为160.2°(如图15(e)、(f)所示),滚动角小于1°。特别地,除了水下超疏油性外,所制备表面浸入水中后会保持高透明性(如图15(e)所示),与未经激光处理的石英玻璃有相近的透射率,对波长为632 nm的单色光束的透过率高达91.6%。在水下,水可以润湿激光诱导的纳米结构,即纳米结构的间隙会被水填充,形成一种玻璃/水界面。一般地,两种材料的折射率越接近,则在这两种介质界面处发生的反射就越弱。石英玻璃、水和空气的折射率分别为1.51、1.33和1.0。由于石英玻璃与水之间的折射率差小于石英玻璃与空气之间的折射率差,因此水环境可以减弱粗糙石英玻璃表面对光的米氏散射和反射,使得激光烧蚀表面具有良好的水下透明度。除了石英玻璃外,飞秒激光也可以在更常见和更便宜的普通玻璃表面上制备出水下超疏油微结构124-125

图 15. 飞秒激光制备的透明水下超疏油石英玻璃表面123。(a)飞秒激光结构化的石英玻璃片;(b)~(d)飞秒激光诱导的纳米结构;(e)所制备表面的水下透明性;(f)水下油滴在结构化玻璃表面上的形状

Fig. 15. Transparent underwater superoleophobic silica glass prepared by femtosecond laser[123]. (a) Photo of laser-treated glass sheet; (b)-(d) femtosecond laser-induced surface nanostructures; (e) underwater transparency of the superoleophobic glass sheet; (f) underwater oil droplet on the laser-structured glass surface

下载图片 查看所有图片

金属种类繁多,而且大多数金属是本征亲水性的,因而只需要在金属表面上构建合适的微纳结构,便可以赋予这些材料水下疏油的性能。Yong等77利用飞秒激光烧蚀金属钛表面后发现飞秒激光不但能在钛表面上制备出微纳米复合粗糙结构,还能将表面氧化。他们通过简单的激光烧蚀在钛基底表面上构建了一层TiO2微纳结构,如图16(a)~(d)所示。所制备的表面经过紫外线照射后,在空气中呈现超亲水性,水滴的接触角为2.5°,如图16(e)所示。在水下,二氯乙烷液滴的接触角为160.5°,滚动角为1°,说明激光结构化表面具有水下超疏油性,如图16(f)所示。TiO2具有特殊的光催化特性。尽管这种TiO2微纳结构在黑暗环境中长时间存放后会失去水下超疏油性,但只要再次经过UV光辐照,该表面便会重新获得超亲水性和水下超疏油性。Zhang等126利用飞秒激光在铝、铜、铁、钼、不锈钢等金属材料表面上制备了各种微米尺度和纳米尺度的结构,同样赋予了这些金属表面水下超疏油性,如图17所示。测得水下油滴(二氯乙烷)在上述激光结构化表面上的接触角分别为157°(铝)、155°(铜)、157°(铁)、152°(钼)和155.5°(不锈钢),滚动角均小于10°。Li等127在蔗糖溶液中利用飞秒激光烧蚀金属镍制备了均匀的锥状微纳结构,使得镍表面也获得了水下超疏油性。

图 16. 飞秒激光处理赋予金属钛表面水下超疏油性77。(a)~(d)飞秒激光在钛表面上制备的分级微纳结构;(e)空气中水滴润湿结构化钛表面;(f)结构化钛表面上的水下油滴

Fig. 16. Endowing titanium surface with underwater superoleophobicity by femtosecond laser ablation[77]. (a)-(d) Laser-induced hierarchical micro/nanostructures on titanium surface; (e) water droplet wetting the structured titanium surface in air; (f) underwater oil droplet on the structured titanium surface

下载图片 查看所有图片

图 17. 飞秒激光在不同金属表面上制备的微纳结构及其水下超疏油性126,插图为水下油滴在对应结构化表面上的形状

Fig. 17. Femtosecond laser-prepared micro/nanostructures on different metal surfaces and their underwater superoleophobicity[126], where the insets show the shape of underwater oil droplets on the corresponding structured surface

下载图片 查看所有图片

有些聚合物本身是亲水性的,而有些聚合物是本征疏水的。亲水性聚合物类似于硅、玻璃、金属等,可以通过飞秒激光处理在其表面上制备合适的微纳粗糙结构来获得水下超疏油性。而疏水聚合物材料,它们通常被认为是较难实现水下超疏油性的基底材料,对其进行激光结构化后,还需要配合其他方法或者修饰亲水化学物质来增大其表面能。例如:飞秒激光烧蚀后的PDMS表面是超疏水的71,在水下,该表面具有银镜效应(因为表面微纳结构与水环境间存在被俘空气层),当水下油滴(如二氯乙烷)接触该表面时,油滴会沿着空气层迅速铺散开,最终油滴的接触角仅为6.5°。因而,激光作用后的PDMS表面具有水下超亲油性。氧等离子体处理是一种增大PDMS材料表面能的常用手段。在氧等离子体辐照下,PDMS表面上的—CH3基团会被—OH基团取代,在PDMS表面形成亲水的硅醇基团(—SiOH)。基于此,Yong等71采用氧等离子体处理飞秒激光结构化的PDMS表面,使其表面获得了水下超疏油性。短时间(约30 s)的氧等离子处理并不会改变PDMS表面的微观形貌,但其所诱发的化学变化却可以使PDMS表面转变为超亲水状态,水滴在处理后表面上的接触角仅为4.5°。当将该材料浸入水下后,油滴在该表面上的接触角可达158°,滚动角为3°,说明结合飞秒激光烧蚀和氧等离子体处理可以使PDMS聚合物具有水下超疏油性。斥油性可以使聚合物不被有机液体溶解。

3.3 水下超疏气性和超亲气性

水溶液中存在气泡是一种普遍现象,这种现象在工业生产、农业养殖、能源环境等领域是不可避免的。有些情况下,气泡的存在是有危害的。例如:微流控系统中的气泡会增加流体的阻力,甚至阻塞微通道;在输液过程中,如果将气泡注入人体血管,就会引发栓塞甚至危及患者的生命健康;在通过电化学方法产生氢气过程中,生成的气泡附着在电极表面上,会阻碍电解液与电极之间的有效接触,进而降低化学反应的效率。相反,有些情况下又需要产生气泡,例如,改善水质过程中需要持续向水中注入微小气泡。如果能够控制气泡在固体表面的浸润行为,就可以更好地排除气泡带来的不利影响或者合理地利用气泡。对比水和油的浸润性,也可以以水下气泡为研究对象,研究气泡在固体表面的浸润行为。在液体环境中,固体表面上的气泡也存在两种极端的浸润状态128-130。当气泡在材料表面的接触角≥150°时,材料具有水下超疏气性;相反,如果气泡的接触角≤10°,则表面具有水下超亲气性。

3.3.1 鱼鳞的水下超疏气性与荷叶的水下超亲气性

鱼可以在水里自由游动,气泡很难黏附在鱼表皮上。在水下,当将一个小气泡释放在鱼鳞表面时,气泡可以保持球形(如图18(a)所示),测得气泡的接触角为155°±2.5°。将鱼鳞稍微倾斜,气泡便可滚走,滚动角仅为9°(如图18(b)所示)。该结果表明鱼鳞具有水下超疏气性,即鱼表皮具有抵抗气泡黏附的能力87图18(c)~(f)揭示了鱼鳞表面具有水下超疏气性的原因。鱼鳞表面的多级微观结构以及亲水性化学组成使得鱼鳞具有亲水性,水能够完全润湿鱼鳞表面的微结构(如图18(c)所示)。在水下,这些粗糙结构会被水填充(如图18(d)所示),如同表面微结构俘获了一层水膜。水本身就与气体相互排斥,因而当气泡与鱼鳞接触时,该水膜就会阻止气泡与鱼鳞微结构接触(如图18(e)所示),气泡很难替换出粗糙结构间填充的水,因此气泡只能接触微结构的顶部并且在鱼鳞表面保持球形,从而使系统能量达到最低(如图18(f)所示)。当以气泡为研究对象时,气泡与鱼鳞表面结构的接触也可以看作是一种水下版本的Cassie接触状态。由于气泡与鱼鳞表面的接触面积被有效抑制,因而鱼鳞表现出水下超疏气性。通常,水下超疏气材料对水中的气体有很强的排斥能力。

图 18. 鱼鳞表面的水下超疏气性和荷叶表面的水下超亲气性87。(a)水下鱼鳞表面上的气泡;(b)气泡在倾斜的鱼鳞表面滚动;(c)~(f)鱼鳞具有水下超疏气性的原因;(g)水下气泡被荷叶表面快速吸附的过程;(h)~(k)荷叶具有水下超亲气性的原因

Fig. 18. Underwater superaerophobicity of fish scales and underwater superaerophilicity of lotus leaves[87]. (a) Underwater bubble on a fish scale; (b) rolling process of a bubble on the tilted fish scale; (c)-(f) reason for underwater superaerophobicity of fish scales; (g) the process of a bubble being adsorbed by a lotus leaf in the water; (h)-(k) reason for underwater superaerophilicity of lotus leaves

下载图片 查看所有图片

水蜘蛛和碱苍蝇能够潜入水下捕食131-132。在水中,它们的身体周围会包裹一层空气层。这层空气层为其在水下提供了呼吸所需的氧气,因而它们可以长时间停留在水下。这种呼吸方式通常被称为“物理鳃呼吸”或“胸甲呼吸”。槐叶萍在水下能够捕获空气,并且能使气体长时间存留在叶面上,该被俘气体层能够减小槐叶萍与水流间的阻力18133。这些动植物的表面能够吸附水中的气体,表现出极强的水下超亲气性。值得注意的是,这些动植物表面都具有超疏水性。与鱼鳞相反,荷叶是典型的超疏水植物。当将荷叶浸入水中后,荷叶表面会反射银镜一样的亮光,这是由于一层空气膜存在于荷叶与周围水环境之间。当水下气泡接触荷叶表面后,可以看到气泡瞬间破裂,并且迅速沿着叶片表面铺散开(如图18(g)所示),气泡像是被荷叶完全吸收了一样,最后气泡的接触角近似为0°。整个吸附过程仅仅持续了36 ms。该结果表明荷叶具有水下超亲气性,在液体环境中能够吸附气体87图18(h)~(k)解释了荷叶表面在水环境中具有超亲气性的原因。分级表面微纳结构和疏水蜡质晶体的共同作用赋予了荷叶超疏水性能。液滴与荷叶表面微纳结构的接触遵循Cassie接触模型(如图18(h)所示)。当将荷叶浸入水下后,由于微纳结构对水的排斥作用,水难以刺入荷叶表面微纳结构之间,只能接触荷叶微结构的顶部,因而在荷叶表面结构与水环境之间形成了一层被俘空气层(如图18(i)所示)。当气泡接触到荷叶表面后,气泡将与荷叶表面上的被俘空气层相连通。由于气泡弯曲界面的表面张力作用,气泡内部的Laplace压强显著高于空气膜中气体的压强,压强差会驱使气泡中的气体进入被俘空气层,并沿着空气膜迅速铺散开(如图18(j)所示)。就这样,气泡被被俘空气层吞并,像是被荷叶表面完全吸附了一样(如图18(k)所示)。因而,超疏水的荷叶表面在水下具有超亲气性。具有水下超亲气性的材料对水下气泡具有很强的吸附和捕获能力。

3.3.2 水下超疏/亲气性表面的飞秒激光制备

受鱼鳞启发,人们通过在亲水(高表面能)材料表面制备微纳结构来获得水下超疏气表面。例如,Yong等87利用飞秒激光在亲水性的硅表面上制备了分级微纳米结构,如图19(a)、(b)所示。该结构化表面在空气中显示出超亲水性,如图19(d)所示。如果将激光处理前的硅片浸入水中,空气气泡在该表面上呈近似半球状,测得气泡接触角为125°±2°,并且气泡能够牢牢黏附在硅表面上。相比之下,水下气泡在激光结构化表面上能够保持球形,接触角达到了162°±2°,如图19(c)所示。当将表面倾斜2°时,气泡便会在样品表面快速滚动,如图19(e)所示。可见,经过飞秒激光处理后,硅表面具有了水下超疏气性,对气泡表现出极低的黏附性。除了硅之外,水下超疏气性也可以在其他亲水基底上获得。多数金属表面是亲水性的,因而可以通过构建微纳结构使表面具有水下超疏气性。例如:水滴在未处理不锈钢表面上的接触角为79.8°±1.6°,水下气泡在该表面上的接触角为111.9°±4.6°,表现为普通的疏气性134;当利用飞秒激光在不锈钢表面构建合适的粗糙微纳结构后,气泡的接触角可以达到152.4°±1.6°,而滚动角只有1.1°±0.9°。激光处理赋予了不锈钢表面水下超疏气性,使之能够在水下排斥气泡。基于同样的激光处理过程,也可以在铝基底上获得水下超疏气性135-136。尽管一些聚合物表面本身是疏水的,并不适合作为实现超疏气性的基底,但是通过合适的化学修饰或处理,也可以呈现水下超疏气性。例如,飞秒激光作用后的PDMS表面在空气中是超疏水的,在水下是超亲气的71。氧等离子体处理可以提高PDMS表面的自由能,因而激光结构化的PDMS表面经氧等离子体辐照后能够转变成超亲水状态,同时在水下显示超疏气性。气泡在该表面上的接触角为156°±1.5°,滚动角为2°。

图 19. 飞秒激光在硅表面上实现水下超疏气性以及在PDMS表面上实现水下超亲气性87。(a)(b)飞秒激光在硅表面上制备的微纳结构;(c)水下气泡在结构化硅表面上;(d)水滴快速润湿结构化硅表面;(e)水下气泡在结构化硅表面上滚落的过程;(f)(g)飞秒激光在PDMS表面上制备的微纳结构;(h)水滴在结构化PDMS表面上;(i)水滴在结构化PDMS表面上滚落的过程;(j)水下气泡接触结构化PDMS表面并在其上铺展的过程

Fig. 19. Underwater superaerophobicity of silicon surface and underwater superaerophilicity of PDMS surface achieved by femtosecond laser processing[87]. (a)(b) Femtosecond laser-induced microstructures on silicon surface; (c) underwater bubble on the structured silicon surface; (d) the process of a water droplet rapidly wetting the structured silicon surface; (e) the process of a bubble rolling off the structured silicon surface in the water; (f)(g) femtosecond laser-induced microstructures on PDMS surface; (h) a water droplet on the structured PDMS surface; (i) the process of a water droplet rolling off the structured PDMS surface; (j) the process of an underwater bubble contacting the structured PDMS surface and spreading out

下载图片 查看所有图片

受荷叶启发,水下超亲气性可以通过在疏水(低表面能)材料表面上构建合适的微纳结构获得。例如,Yong等87采用飞秒激光在疏水性PDMS材料表面构建了分级微纳米结构,如图19(f)、(g)所示。结构化表面转变为超疏水状态,水滴在该表面上的接触角为156.5°±1.5°(如图19(h)所示),滚动角为1.2°(如图19(i)所示)。当将PDMS表面浸入水下后,激光作用区域也能够像荷叶一样反射银色的亮光;在PDMS表面下方释放一个小气泡后,气泡会上浮并接触激光结构化区域。气泡能在35 ms的时间内迅速在该表面扩散开(如图19(j)所示),并最终被PDMS表面完全吸附掉,使水/气界面与样品表面重合,此时气泡的接触角近似等于0°。这说明飞秒激光处理后的PDMS表面在水下具有超亲气性。类似地,Huo等137利用飞秒激光在另一种典型的疏水聚合物PTFE表面上制备微纳结构,也获得了水下超亲气表面。尽管飞秒激光作用后的金属表面和硅表面呈现超亲水性和水下超疏气性,但这些表面可以通过低表面能修饰转变为超疏水状态,从而赋予这些材料水下超亲气性。例如,Yong等134136先基于飞秒激光在不锈钢、铝、硅表面上构建微纳粗糙结构,然后利用硬脂酸/氟硅烷修饰来降低材料的表面能,使激光结构化不锈钢、铝、硅等表面在水下表现出了优异的超亲气性。

3.3.3 选择性气泡拦截和通过功能

水下气泡在超疏气和超亲气表面上有着截然相反的浸润行为。水下超疏气表面具有排斥气泡的能力,而超亲气表面可以吸附水中的气泡。特殊的气泡浸润性使得水下超疏气和超亲气材料成为操控气泡的有效工具。结合微穿孔结构,Yong等87发现气泡浸润性对水下气泡通过多孔膜的过程有着重要的影响。他们先在薄铝片上通过机械方法制备了直径约为312 μm的穿孔结构,然后利用飞秒激光在铝片两侧诱导出超亲水且水下超疏气的微/纳米结构,如图20(a)所示。将该多孔铝片置于水下并在铝片下方连续释放气泡,结果显示,第一个上浮气泡接触到铝片下表面后被拦截下来,停止上升,随后的气泡也相继被拦截下来,这些气泡只能在多孔铝片表面下汇聚形成更大的气泡。这一实验结果表明,水下超疏气多孔膜对液体中的气泡具有拦截作用,不允许气泡通过(如图20(b)所示)。这种气泡拦截作用得益于多孔膜上超疏气微结构对气泡的排斥作用。如图20(c)所示,在液体环境中,铝片表面的微结构和穿孔会被水完全润湿,被俘水膜引发的水下超疏气性能够排斥所有接触到多孔膜的气泡,而填充在穿孔间的水也会阻碍气泡从孔穿过。因此,无论多少气泡上浮到水下超疏气多孔膜处,都会被拦截下来,并停留在多孔膜下方。飞秒激光制备的水下超疏气微纳结构赋予了多孔膜拦截气泡的功能,不允许气泡穿过。

图 20. 水下超疏气多孔膜对气泡的拦截作用87。(a)所制备多孔铝膜的微纳结构;(b)在水下持续向多孔膜下方释放微小气泡的过程;(c)水下超疏气多孔膜具有气泡拦截功能的原理

Fig. 20. Bubble interception effect of underwater superaerophobic porous membrane[87]. (a) Micro/nanostructure of the structured porous aluminum film; (b) continuous release of tiny air bubbles beneath the porous membrane in the water; (c) principle of the bubble interception function of the underwater superaerophobic porous membrane

下载图片 查看所有图片

与水下超疏气多孔膜相比,水下超亲气多孔膜有着完全相反的气泡穿透行为。Yong等87基于飞秒激光烧蚀在多孔PTFE膜两侧表面上制备超疏水且水下超亲气的微纳结构,获得了一种水下超亲气多孔膜,如图21(a)所示。同样地,在水环境中持续地在该多孔膜下方释放气泡。如图21(b)所示,当第一个气泡上浮并接触到该多孔膜后,由于膜表面的超亲气性,气泡会迅速沿多孔膜的下表面铺散开。随后的气泡也同样被该多孔膜吸附。随着吸附气体的不断累积,在多孔膜的上表面会鼓起气膜。持续的气泡吸附使得气膜的体积逐渐增大,其形状从凸起变为钟铃形再变为纺锤形。当气体累积到一定程度时,多孔膜上方鼓起的气膜所受到的浮力已经能够克服其与多孔膜上表面间的黏附力,此时气膜与上表面分离,并最终以一个新的大气泡的形式继续上浮到水面。重复上述过程,最终所有的气泡都能够穿过该多孔膜继续上浮。图21(c)刻画了气泡穿过水下超亲气多孔膜的过程。由于微纳结构的超疏水性,在水下,多孔膜的两侧表面会附着一层被俘空气层。另外,穿孔也被气体填充着,并将上下两个表面上的气膜连通起来。当上升的气泡接触到下表面时,气泡中的气体迅速流入被俘气膜中,并最终与多孔膜两侧的气体合并。这一过程符合多孔膜的水下超亲气性。随着更多的气泡到达下表面并依次被吸附,附着在多孔膜上的气体体积持续增加,被俘气体内部气压不断增大。在某一时刻,压强驱动气体将多孔膜上表面的水抬升起,从而使气体在上表面鼓起。随着鼓起气体体积逐渐增大,其所受浮力足以克服多孔膜的黏附力,鼓起的气体整体脱离多孔膜上表面继续上浮。这样,气泡便成功地穿过了水下超亲气多孔膜。

图 21. 水下超亲气多孔膜对气泡的允通作用87。(a)所制备多孔PTFE膜的微纳结构;(b)持续在水下多孔膜下方释放微小气泡的过程;(c)水下气泡穿过超亲气多孔膜的示意图

Fig. 21. Bubble permeability effect of underwater superaerophilic porous membrane[87]. (a) Micro/nanostructure of the structured porous PTFE membrane; (b) continuous release of tiny air bubbles beneath the porous membrane in the water; (c) schematic diagram of underwater bubbles passing through the superaerophilic porous membrane

下载图片 查看所有图片

研究表明,水下超疏气多孔膜可以拦截水中的气泡,而水下超亲气多孔膜则允许气泡穿过。利用水下超疏气和水下超亲气多孔材料可以实现对液体中微小气泡的收集或去除。

4 特殊液体浸润性

除了普通的水、油和气泡之外,生活中还有大量的其他液体。超疏水、超疏油、水下超疏气表面具有排斥水/油/气泡的能力,这些排斥性均来源于Cassie接触态。然而,Cassie接触态是一种不稳定的状态,受到外界干扰(如振动、温度变化、气压变化等)后很容易转变到Wenzel接触态。也就是说,超疏水、超疏油、水下超疏气表面容易受到外界干扰而失去对水/油/气泡的排斥能力。自然界中的猪笼草表面也能够抵抗各种液体的黏附。不同于以上各种超疏液/气表面,猪笼草借助一层润滑液层而不是基于Cassie接触态21138-139来抑制液滴在其表面黏附。生活中还存在一些特殊的液体,如聚合物和液态金属,它们在材料和工程等应用领域也发挥着重要作用。近年来,这些特殊液体的浸润性成为了超浸润表面研究领域新的关注方向。浸润性的设计有助于更好地控制、操作和使用这些特殊液体。

4.1 液体灌注的多孔超滑表面(SLIPS)

猪笼草是一种肉食性植物,其口袋的边缘处非常湿滑139,如图22(a)所示。当小昆虫落在猪笼草唇边缘处时,它们很难站稳,很容易滑落进猪笼草口袋内部,最终被口袋内部的消化液分解成营养物质,进而被猪笼草吸收。研究发现,猪笼草的唇边缘上整齐地排列着宽度为几十微米的微槽结构(如图22(b)所示)138-139,沟槽内部则布满了整齐排列、相互重叠的微米级空腔结构(如图22(c)所示),这些空腔中填充着润滑液体,形成了连续、光滑、稳定的界面。这层被俘液体层使得猪笼草唇边缘能够保持湿滑,外来的液滴或昆虫很容易从猪笼草唇边缘滑落,因此猪笼草表面具有优异的抗液性。Wong等21首次揭示了猪笼草表面的这种独特浸润特性,并定义该种浸润性表面为“液体灌注的多孔超滑表面”(SLIPS)。

图 22. 猪笼草表面的超滑特性以及基于飞秒激光制备超滑表面的流程。(a)猪笼草139;(b)(c)猪笼草表面的微结构;(d)在疏水PTFE多孔织物结构上制备超滑表面的流程21;(e)液滴在超滑表面上的浸润模型;(f)基于飞秒激光诱导的多孔微结构制备超滑表面的流程141

Fig. 22. Slippery property of Nepenthes surface and the preparation of slippery surfaces by femtosecond laser. (a) Nepenthes[139]; (b)(c) microstructures on the Nepenthes surface; (d) the process for preparing slippery surfaces on hydrophobic PTFE porous fabrics[21]; (e) wetting model of a liquid droplet on a slippery surface; (f) preparation process of slippery surface based on femtosecond laser-induced porous microstructures[141]

下载图片 查看所有图片

受猪笼草超滑特性的启发,Wong等21将化学惰性的润滑液注入疏水的PTFE多孔织物结构中,首次制备了超滑表面,如图22(d)所示。润滑液被锁定在PTFE微结构的孔隙中,并且在材料表面形成了光滑的润滑膜层。图22(e)描绘了液滴在超滑表面上的接触状态。事实上,液滴并不直接与固体表面接触,而是与表面上的润滑液层接触,即液/液接触取代了原本的液/固接触。表面被俘润滑液层有效地降低了固体表面接触线对液体的钉扎作用,使得多种液体都能够轻而易举地从超滑表面滑落,因而超滑表面能够排斥各种液体。制备SLIPS需要兼顾三个要素:第一,基底表面要具有多孔微结构,以便能将润滑液牢牢锁住。这样的多孔结构最好是相互连通的,连通性可以使不同区域的被俘润滑液相互流通和补充。第二,与要排斥的液体相比,润滑液对多孔结构应具有更强的亲和性,这样能保证润滑液不会被其他液体从多孔结构中排挤出去。通常,这种多孔结构的表面能比较低。第三,选择润滑液时需要注意其不能与被排斥液体相溶。因而,制备超滑表面通常需要在材料表面上构建多孔网络微结构,然后将润滑液灌注进多孔结构。

研究发现,飞秒激光能够在多种固体材料表面上直接烧蚀出多孔微结构,这为实现超滑特性提供了必要的基础。基于飞秒激光诱导的多孔微结构,Yong等140-141提出了一种制备润滑液灌注超滑表面的策略。如图22(f)所示,首先利用飞秒激光烧蚀在材料表面形成微纳孔隙结构,然后对微结构进行低表面能修饰,使之疏水但亲润滑液,最后选择合适的润滑液并将其灌注进多孔微结构。所制备超滑表面具有排斥液体的能力,使得各种液体都能够在所获得的超滑表面上滑落下去。

基于上述制备过程,通过飞秒激光可以在多种材料表面获得超滑特性。例如,利用飞秒激光可以一步直接在尼龙(聚酰胺,PA)材料表面烧蚀出一种多孔网络微结构,如图23(a)所示140。激光作用后的表面被直径约为1~5 μm的凸出物和直径为1 μm左右的孔隙均匀覆盖,而且这些微米孔隙相互连通,形成了多孔网络结构。孔隙从聚合物的表面延伸到内部,深度可达到9.5 μm。这些孔隙的形成被认为是飞秒激光作用过程中材料汽化造成的。在飞秒激光烧蚀尼龙基底过程中,尼龙材料同时发生了直接的汽化。激光作用区域的温度极高(通常>5000 K),因而激光作用区域的尼龙表面处于瞬时熔融状态。材料汽化生成的气体从熔融层被排出固体基底。随着激光焦点前移,熔融的尼龙立即冷却并固化,使得气体的逃逸路径被保留下来,从而在材料表面形成了相互连通的微孔结构。粗糙的多孔结构增强了尼龙基底的亲水性,使水滴的接触角从原始的88.5°±3°减小到50.7°±5°。进一步采用氟硅烷进行修饰,可以降低所制备结构的表面能,使其表面转变为疏水状态,接触角为129.9°±3.6°,但此时表面对各种液体仍具有高的黏附性,即使是将样品竖立,水滴和有机液滴依然可以黏附在材料表面上。最后,选用不易挥发且对环境友好的硅油作为润滑液灌注进激光诱导的多孔结构中,便可使尼龙表面具有超滑特性。如图23(b)、(c)所示,水滴和极低表面张力的正十六烷液滴可以很容易在所制备的超滑表面上滑落。这样的超滑表面可以排斥各种纯的或复合液体,如饮用水、湖水、墨水、甘油、咖啡、牛奶,甚至蛋清和蛋黄。这些液体可以很容易地从超滑表面滑落下去,且不留任何痕迹,如图23(d)所示。

图 23. 飞秒激光在尼龙表面上制备的超滑结构140。(a)飞秒激光诱导的多孔网络微结构;水滴(b)和正十六烷液滴(c)在所制备超滑表面上滑落的过程;(d)各种液滴在超滑表面上滑落;(e)所制备超滑表面的自修复性

Fig. 23. Slippery structure prepared by femtosecond laser on PA surface[140]. (a) Femtosecond laser-induced porous network microstructure; the process of a water droplet (b) and an n-hexadecane droplet (c) sliding off the prepared slippery surface; (d) droplets of various liquids sliding off the slippery surface; (e) self-repairing ability of the slippery surface

下载图片 查看所有图片

与超疏水表面和超疏油表面相比,超滑表面往往具有优异的稳定性,这是由其特殊的抗液机制决定的。研究发现,飞秒激光制备的超滑尼龙表面即使被弯折100次或者被摩擦100次后,仍能保持最初的液体排斥性能。这种稳定性来源于三个方面:1)尼龙本身是一种化学性质比较稳定的聚合物材料;2)激光诱导的多孔层与基底来源于同一种材料;3)锁定在微孔中的润滑液能起到缓冲层的作用。此外,所制备的超滑表面还具备自修复功能。如图23(e)所示,即使该表面被刀划刻后,液滴也能够在该超滑表面上顺利地通过划痕,并继续滑落下去。在润滑液表面张力及毛细作用的驱动下,多孔网络结构的连通性使得周围的润滑液能够自发地流淌到损伤区域,对损伤区域进行重新填充,从而及时修复损伤区域并恢复其超滑特性。独立的多孔微结构也能实现超滑特性,但只有多孔相互连通的超滑表面才具有优异的自修复性。

基于飞秒激光直写也可以在聚对苯二甲酸乙二醇酯(PET)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚乙烯(PE)、聚乳酸(PLA)、聚四氟乙烯(PTFE)等聚合物表面上制备出多孔网络微结构,从而可以使这些聚合物表面实现超滑性140-141

相对聚合物而言,在金属表面制备多孔微纳结构更困难一些,这是因为金属更硬且激光损伤阈值更高。Cheng等142利用高重复频率的飞秒激光在可植入医疗材料NiTi合金上成功制备了多孔结构。他们利用锥透镜将高斯光束转变为焦场深度更大、焦斑更小的贝塞尔光束,并将光束以脉冲串的形式作用于材料表面。每一个脉冲串包含数个高重复频率的飞秒激光脉冲,可以在材料表面烧蚀出一个微孔。利用逐行扫描的方式,在合金表面上烧蚀出了一系列直径仅为3 µm、深度可达30 µm的深孔,如图24(a)、(b)所示。将所制备的多孔表面放置在空气中7 d后,其表面会逐渐转变为疏水状态,对水滴的接触角升至120°。这是由于表面吸附了空气中的烃类污染物,使低表面能的烃基官能团嫁接到了多孔NiTi表面。进一步,以无毒的全氟萘烷溶液作为润滑剂,将其灌注进疏水的多孔结构中,结果发现,所制备超滑表面不但排斥水(如图24(c)所示),还能够排斥血液(如图24(d)所示),使得血液无法在这种可植入材料上黏附。相比之下,血液在原始NiTi合金表面(未进行激光处理)上滑动时会留下明显的印记,如图24(e)所示。超滑特性可以大幅提升NiTi合金的血液相容性,使该可植入材料具有优异的抗凝血性、极低的溶血率和出色的抗菌性能。

图 24. 飞秒激光在NiTi合金表面制备的超滑结构142。(a)(b)飞秒激光在NiTi合金表面上制备的多孔微结构;(c)水滴在所制备超滑金属表面上的滑落过程;(d)血液在超滑表面上的滑落过程;(e)血液在普通NiTi合金表面上的滑落过程

Fig. 24. Femtosecond laser-prerpared slippery structure on NiTi alloy surface[142]. (a)(b) Femtosecond laser-induced porous microstructure on NiTi alloy surface; (c) sliding process of a water droplet on the prepared slippery metal surface; (d) sliding process of a blood droplet on the as-prepared slippery surface; (e) sliding process of a blood droplet on the untreated NiTi alloy surface

下载图片 查看所有图片

液体辅助加工是一种在金属表面诱导多孔结构的有效方法。例如,飞秒激光在空气中烧蚀无法直接在不锈钢表面上形成多孔结构,但可以在乙醇溶液中烧蚀不锈钢表面获得所需的多孔微结构143。在激光作用过程中,液体环境对微孔结构的形成发挥着重要作用。激光脉冲聚焦在不锈钢和乙醇界面时,通过非线性多光子吸收在界面处形成高压、高温的等离子体。同时,聚焦的超高温激光也会使乙醇分解,在固/液界面处产生大量的微小气泡。随着等离子体冲击波和微小气泡的迅速膨胀,金属表面便形成了许多微孔。此外,液体环境可以有效抑制激光加工过程中喷射出的微纳颗粒回落到金属表面,从而避免了回落的喷射颗粒覆盖所形成的微孔结构。经过低表面能修饰和润滑液灌注后,所得超滑表面能够排斥各种液体。研究发现,乙醇辅助飞秒激光烧蚀可以在各种金属表面上构建微/纳米级孔隙结构,从而使得飞秒激光可以在广泛的金属材料上获得超滑表面。

Liang等144提出了一种基于飞秒激光湿法刻蚀技术在玻璃表面制备超滑结构的巧妙策略。如图25(a)所示,他们先利用飞秒激光在石英玻璃内部烧蚀,然后在垂直方向上直写出了连接表面的线条。经氢氟酸稀释液腐蚀后,石英玻璃内部的烧蚀区域变成空腔结构,而垂直线条则变成了连接空腔与外部环境的微通道(如图25(b)所示)。借助于负压,可以将硅油灌注进空腔和微通道内,在表面形成超滑层。石英玻璃内部的空腔可以储存大量的润滑液,而微通道则保障了玻璃表面被润滑液层覆盖。在液滴滑落过程中,即使部分表面上的硅油被液滴带走,润滑液也能够及时从储液仓中补充到表面上,从而使得该玻璃表面具有非常稳定、耐久的超滑特性(如图25(c)所示)。实验结果表明:当200个液滴在普通多孔超滑玻璃表面滑下后,表面会逐渐失去超滑性,后续液滴会黏附在表面上;而对于所制备的具有储液仓结构的超滑表面,其超滑性没有丝毫减弱(如图25(e)所示)。该超滑表面可支持超过4000个液滴滑下,耐久性显著优于普通超滑表面(如图25(d)所示)。此外,超滑玻璃还具有较高的透光性,并且可以抵抗藻类和原油的黏附,在深水压和海水环境中均能保持良好的超滑性能。

图 25. 基于飞秒激光湿法刻蚀技术在石英玻璃表面制备超滑结构144。(a)超滑表面的制备流程;(b)飞秒激光制备的储液仓结构;(c)超滑表面自分泌润滑液示意图;(d)超滑表面允许滑落液滴数量统计;(e)液滴在普通超滑玻璃表面以及具有储液仓结构超滑表面上滑落200次后的对比

Fig. 25. Preparation of slippery structure on quartz glass by femtosecond laser wet etching[144]. (a) Preparation process of the slippery surface; (b) liquid-storage structure prepared by femtosecond laser; (c) schematic diagram of slippery surface autocrine lubricant; (d) statistics on the number of droplets allowed to slide off; (e) comparison of droplets after 200 slides on an ordinary slippery glass surface and on a compartment-structured slippery surface

下载图片 查看所有图片

4.2 水下超疏聚合物性

在传统的浸润性研究领域,水、油和气泡是主要的研究对象。然而,在日常生活中,聚合物也是一种最常见的材料,其已被广泛应用于制造业、化学工业、包装、建筑、食品加工、制药业、生物工程等领域。有些聚合物在室温下呈液态。与纯的水和油相比,液体聚合物的组成成分更为复杂。通常,液体聚合物具有低流动性和高黏度的特点,这使得聚合物很容易附着在固体材料上,并且很难被去除。不同于常规的液体(如水和油),一些液体聚合物能够转变成永久的固态。例如,由预聚物和固化剂组成的聚二甲基硅氧烷(PDMS)混合液处于液相状态,通过交联诱导固化可以将其转变成固体状态,并使其形状固定下来。一些光敏树脂也可以通过紫外光照从液态转变成固态。降低液体聚合物与固体基底之间的黏附性对于操作和使用聚合物具有重要意义。然而,与广泛被研究的水、油、气泡的浸润性相比,液体聚合物在固体表面的浸润性很少被研究。

对于聚合物生产、成形、铸造和3D打印等与聚合物相关的应用领域来说,防止液体聚合物黏附到材料表面仍然是一个巨大的挑战。Yong等72145首次发现飞秒激光结构化的不锈钢表面具有排斥液体聚合物的性质,并将这种新发现的浸润现象定义为“水下超疏聚合物性”。与其他类型超浸润状态的定义类似,液体聚合物液滴在水下超疏聚合物表面上的接触角大于150°,而且其滚动角越小,黏滞性就越低。如图26(a)~(c)所示,通过飞秒激光烧蚀在不锈钢表面上制备了三级微结构,该微结构主要由周期为80 μm的宏观微沟槽(沟槽宽度约为46.2 μm,深度约为13.4 μm)、沟槽间山状微结构(直径为5.2~11.7 μm,最大高度达27.5 μm)以及微山顶部的周期性纳米条纹结构构成。不锈钢是一种本征亲水材料,水在其表面的接触角约为79°。激光处理前,PDMS液滴在平滑不锈钢表面上的接触角为23°,说明不锈钢在空气中具有亲聚合物性,如图26(d)所示。当将未处理的不锈钢表面浸入水下时,聚合物液滴在材料表面的接触角为116°,呈水下疏聚合物性,如图26(e)所示。即使将不锈钢表面竖立,聚合物液滴也能够紧紧黏附在不锈钢表面上,说明聚合物液滴与平滑不锈钢表面的黏附性极强。当在不锈钢表面构建微纳结构后,不锈钢表面转变为超亲水状态,水滴可以完全润湿该表面(如图26(h)所示)。在空气中,聚合物液滴在结构化不锈钢表面上的接触角约为16°(如图26(f)所示),比在未处理表面上的小一些,说明不锈钢本征的亲聚合物性被所构建的粗糙微纳结构增强了。而在水下,PDMS聚合物液滴在激光结构化表面上呈小球状,接触角达到了156°(如图26(g)所示),测得接触角滞后仅为4°。图26(i)展示了在水环境中移动聚合物液滴使其接触金属表面并移开的过程。在整个操作过程中,液滴没有发生明显的形变,也没有与底面发生黏附。这些结果说明飞秒激光制备的多级微纳结构赋予了不锈钢表面水下超疏聚合物性,使其能够在水环境中排斥聚合物液体。通常,水下超疏聚合物性可以通过在亲水基底上构建合适的表面微纳结构来实现。

图 26. 飞秒激光赋予不锈钢表面水下超疏聚合物性72。(a)~(c)飞秒激光在不锈钢表面制备的三级微纳结构;(d)空气中未处理表面上的聚合物液滴;(e)水下未处理表面上的聚合物液滴;(f)空气中激光结构化表面上的聚合物液滴;(g)水下激光结构化表面上的聚合物液滴;(h)激光结构化表面的超亲水性;(i)水下聚合物液滴接触金属表面并离开的过程

Fig. 26. Endowing stainless steel with underwater superpolymphobicity by femtosecond laser processing[72]. (a)-(c) Femtosecond laser-induced hierarchical micro/naostructures on stainless steel; (d) in-air polymer droplet on the untreated stainless steel surface; (e) underwater polymer droplet on the untreated surface; (f) in-air polymer droplet on the laser-structured surface; (g) underwater polymer droplet on the laser-structured surface; (h) superhydrophilicity of the laser-structured surface; (i) moving a polymer droplet to contact the structured surface and leave in the water

下载图片 查看所有图片

图27(a)展示了水环境中PDMS液滴在激光结构化不锈钢表面上的侧视透射光学图,能够反映出聚合物与不锈钢表面的真实接触状态。在聚合物与固体表面的界面处可以观察到一系列白光斑,这是由于背景光可以自由透过这些区域。白色斑点位置不能阻挡光线穿透,因而这些区域被水填充着,说明聚合物液滴只接触了不锈钢表面微结构的顶端部分,这是一种典型的水下Cassie接触状态。这种接触状态也可以通过固化PDMS液滴并去除周围水环境后的扫描电镜(SEM)图像来验证。图27(b)、(c)所示为固化后聚合物液滴的SEM图像,可以看到聚合物仅与微纳结构的顶部接触。

图 27. 水下聚合物液滴与超疏聚合物微结构接触72。(a)水下聚合物液滴在激光结构化不锈钢表面上的侧视透光图;(b)(c)PDMS液滴固化后的SEM图像;(d)水下超疏聚合物性的形成机制

Fig. 27. Contact between an underwater polymer droplet and superpolymphobic microstructure[72]. (a) Light-transmission photography of an underwater polymer droplet on the laser-structured stainless steel surface; (b)(c) SEM images of PDMS droplet after solidification; (d) formation mechanism of underwater superpolymphobicity

下载图片 查看所有图片

水下超疏聚合物性与水下超疏油性的形成机制类似。飞秒激光诱导的微纳结构增强了亲水基底的亲水性,甚至使其达到了超亲水状态。如图27(d)所示,当将结构化表面浸入水中后,表面微纳结构被水完全润湿,即微观结构间隙被水填充。由于水(极性分子)和聚合物(非极性分子)之间的不溶性和互斥性,当聚合物液滴接触材料表面后,微纳结构间的填充水层会对聚合物液滴施加极强的排斥作用。被俘水层有效阻碍了聚合物与结构表面的接触,因此液体聚合物无法刺入粗糙结构的间隙,只能接触微结构顶部很小的区域。事实上,聚合物坐落在固体和水的复合界面上,即处于水下Cassie状态。表面微纳结构减小了液体聚合物与固体表面间的接触面积以及范德瓦耳斯力,使得表面在水下具有超疏聚合物性,能够强烈地排斥各类液体聚合物。

遵循上述设计原理,可以通过飞秒激光在各类亲水性材料表面上构建合适的微纳结构,从而获得水下超疏聚合物表面。硅、玻璃、铝和铜等是亲水性材料,当在这些材料表面上利用飞秒激光制备出微纳结构后,这些表面便具有了水下超疏聚合物性,如图28(a)~(d)所示146。水下聚合物液滴在这些结构化表面上能够保持小球状,接触角均大于150°。此外,飞秒激光制备的水下超疏聚合物表面也能够排斥各种化学组成的液体聚合物。例如,硅油、环氧树脂和聚丁二烯液滴在激光结构化不锈钢表面上的接触角均大于150°,不会黏附到所制备的表面上,如图28(e)所示。

图 28. 飞秒激光赋予不同材料水下超疏聚合物性146。硅(a)、玻璃(b)、铝(c)、铜(d)表面在激光作用下实现了水下超疏聚合物性,其中:第一行是激光在材料表面上制备的微结构;第二行是水滴在未处理材料表面上的浸润性,反映出材料的本征亲水性;第三行是水环境下聚合物液滴在结构化表面上的形状。(e)水下硅油、环氧树脂和聚丁二烯液滴分别在激光结构化不锈钢表面上的形状

Fig. 28. Endowing different materials with underwater superpolymphobicity by femtosecond laser[146]. (a)-(d) Underwater superpolymphobicity of silicon (a), glass (b), aluminum (c), and copper (d) surfaces. First line: laser-induced microstructures on different materials surface; second line: wettability of a water droplet on untreated materials surface, showing intrinsic hydrophilicity of the untreated surfaces; third line: shape of underwater polymer droplet on the structured surfaces. (e) Underwater shapes of silicone oil, epoxy resin, and polybutadiene droplets on the laser-structured stainless steel surface

下载图片 查看所有图片

尽管水下超疏聚合物性与水下超疏油性的形成机制类似,但它们是两种不同的浸润性质,主要体现在排斥液体类型不一样上。水下超疏聚合物表面排斥的是液体聚合物而不是油,因而水下超疏聚合物性具有一些特殊的应用场景。例如,水下超疏聚合物性可以抑制聚合物在固体表面黏附,并可用于操控液体聚合物。更重要的是,许多液体聚合物可以从液态转变为固态,从而能够将聚合物的形状固定下来。这些性质和应用都是水和油所不具备的。

水下超疏聚合物微结构对聚合物的排斥作用可以被用来抑制聚合物在固体材料表面的黏附。比如,Yong等147提出了一种选择性抑制聚合物黏附的策略并用该策略来制备微流控系统中的微通道结构,如图29所示。飞秒激光扫描可以在玻璃基底表面直写出微米尺度的凹槽结构(如图29(a)所示),槽宽和槽深分别为53.0 μm和21.4 μm。槽内表面覆盖着亚微米大小的凸起结构(如图29(b)所示)和更精细的纳米结构(如图29(c)所示)。激光诱导的这种微纳米结构具有水下超疏聚合物性,水下PDMS液滴在该结构上的接触角为155.5°(如图29(d)所示),滚动角为2.7°。因此,微槽内部结构在水下对聚合物有着强烈的排斥作用,而未经激光处理的平滑玻璃区域依然对聚合物有较高的黏附性。图29(e)~(j)展示了制备微通道的整个流程:1)通过飞秒激光直写在玻璃表面制备出水下超疏聚合物沟槽结构(如图29(e)所示),然后将玻璃基底浸入装满水的容器中(如图29(f)所示)。2)将未固化的PDMS液体倾倒在玻璃表面上,聚合物液体便在玻璃表面铺散开,最终在玻璃表面上形成一层液态PDMS层(如图29(g)所示)。由于微沟槽的水下超疏聚合物性,PDMS液体只接触未被激光烧蚀的平滑区域。3)通过加热将PDMS固化(如图29(h)所示),使固体PDMS层牢牢黏附在平滑玻璃结构上。4)将玻璃基底从水中取出并蒸发干净上面附着的水后(如图29(i)所示),便在固化的PDMS层与玻璃基底之间形成了中空的微通道结构(如图29(j)~(l)所示)。微通道是微流控系统的核心部件。通过控制聚合物在固体基底上的黏附,可以制备不同的微流控系统,如图29(m)、(n)所示的最简单的“T”形微流控系统。

图 29. 基于飞秒激光制备的水下超疏聚合物微结构设计聚合物与固体材料的黏附147。(a)激光在玻璃表面上直写的微沟槽结构的轮廓;(b)(c)激光诱导的微纳结构;(d)水下激光结构化玻璃表面上的聚合物液滴;(e)~(j)通过设计水下超疏聚合物微结构制备微通道的流程;(k)(l)固化的PDMS层与玻璃基底之间形成的微通道;(m)(n)制备的最简单的“T”形微流控系统

Fig. 29. Design of the adhesion between polymer and solid substrate based on the underwater superpolymphobic microstructures prepared by femtosecond laser[147]. (a) Three-dimensional profile of the laser-written microgroove on glass surface; (b)(c) laser-induced micro/nanostructures; (d) underwater polymer droplet on the laser-structured glass surface; (e)-(j) the process for preparing microchannels by designing underwater superpolymphobic microstructures; (k)(l) microchannels formed between cured PDMS layer and the glass substrate; (m)(n) simple “T”-shaped microfluidic system

下载图片 查看所有图片

水下超疏聚合物性也可以用来操控或设计聚合物的形状。利用水下超疏聚合物手套,可以将聚合物捏成任意形状,而且聚合物不会残留在手套上。特别地,有些聚合物可以固化,从而可以使形状永久地固定下来。例如,高温可以固化PDMS混合液,紫外光照射可以诱导光敏树脂固化。Yong等72提出了一种基于激光诱导的水下超疏聚合物微纳结构将PDMS液体调整至曲面状态并制备微透镜结构的策略,如图30所示。选用多孔金属板作为基底材料(有微孔阵列穿透金属薄板),利用飞秒激光在多孔金属表面加工出水下超疏聚合物微纳结构,如图30(a)、(b)所示。在玻璃表面上铺展一层液体PDMS层(如图30(c)所示),并将其整体移入水环境中(如图30(d)所示),然后将结构化金属片放置在PDMS液层之上,令超疏聚合物的一面接触液体聚合物(如图30(e)所示)。超疏聚合物微结构不允许PDMS液体刺入金属片上的微孔内,在金属板压力和聚合物表面张力的作用下,微孔处的聚合物/水界面形成弯液面(如图30(e)插图所示)。这是由于表面张力需要平衡聚合物/水界面两侧的压力差。之后进行加热固化PDMS(如图30(f)所示),然后将样品从水中取出并蒸发掉附着的水(如图30(g)所示),再剥离掉玻璃基板和多孔金属片(如图30(h)所示),便可获得PDMS固体表面。固化后的聚合物表面分布着微米级的凸弯月面,具有完美的曲面形状(如图30(i)所示),该曲面可以被当作微透镜使用。所制备的微透镜阵列具有优异的成像能力(如图30(j)、(k)所示)。

图 30. 基于飞秒激光制备的水下超疏聚合物微结构设计聚合物的形状72。(a)~(h)利用水下超疏聚合物性制备微透镜的流程;(i)所制备的微透镜的3D形貌;(j)(k)测试透镜成像能力的装置及成像效果

Fig. 30. Design of polymer shape by using femtosecond laser-prepared underwater superpolymphobic microstructure[72]. (a)-(h) The process for the preparation of polymer microlenses based on the underwater superpolymphobicity; (i) 3D profile of the prepared microlens; (j)(k) schematic drawing of the device for testing the imaging ability of a lens and the imaging effect

下载图片 查看所有图片

4.3 超疏液态金属性

液态金属(如共晶镓铟合金)以其在液体机器人和柔性电路中的潜在应用价值受到了越来越多的关注148-151。实现这些应用的技术核心是实现液态金属形状和黏附性的良好控制,甚至是获得复杂的液态金属图案。然而,液态金属除了具有金属的基本属性之外,还具有液体的性质,如流动性等。由于液态金属与固体表面之间具有高的黏附性,液态金属很容易黏附在固体材料表面。高黏附性是控制液态金属形状和图案化面临的最大障碍,赋予固体表面排斥液态金属的性能对于实现基于液态金属的液体机器人和柔性电路具有重要意义。

Yong等152研究了液态金属在激光结构化表面上的浸润行为。他们利用飞秒激光烧蚀在硅表面上制备了周期性的微纳结构,如图31(a)、(b)所示。未经飞秒激光处理的硅表面表现为亲水性(如图31(c)所示),当EGaIn液态金属液滴接触平滑的硅表面后,液滴便会黏附在硅表面上并形成圆塔形状,液态金属液滴的接触角为142.0°±1.0°(如图31(d)所示),此时的液态金属液滴与硅表面有着较大的接触面积。当缓慢倾斜样品,直到倾斜角达到60°左右时,液态金属才能从硅表面上滚落下去(如图31(e)所示)。这说明平滑的硅表面对液态金属具有较高的黏滞性。对于结构化硅表面,粗糙的微纳结构使得表面具有超亲水性,水可以铺散开并充分润湿结构化区域(如图31(f)所示)。液态金属液滴在结构化硅表面上的接触面积明显减小了,液滴的接触角达到了163.0°±3.0°,如图31(g)所示。当表面倾斜到5.7°±0.7°时,液态金属液滴可以从表面滚落下去(如图31(h)所示)。液态金属与该表面上水滴的浸润状态完全不同。极高的接触角和极低的滚动角说明粗糙的硅表面具有优异的液态金属排斥性,也就是说具有防止液态金属黏附的性能。如果采用氟硅烷修饰,则可将这种微纳分级结构转变为超疏水状态(如图31(i)所示)。有趣的是,液态金属液滴在该修饰后的表面上依然具有极高的接触角(接触角为160.0°±2.0°,如图31(j)所示)和极低的滚动角(滚动角为4.0°±1.0°,如图31(k)所示),这表明低表面能修饰后的粗糙硅表面也具有排斥液态金属的能力。根据超疏水性的定义,可以将液态金属液滴在固体表面上的接触角≥150°的情形称为“超疏液态金属性”。当液态金属液滴的滚动角小于10°时,固体表面对液态金属具有极低的黏滞性。因此,飞秒激光诱导的微纳结构使硅表面具有了超疏液态金属性。

图 31. 飞秒激光在硅表面上制备的微纳结构的超疏液态金属性152。(a)(b)激光在硅表面上诱导的微纳结构;(c)~(e)未处理平滑硅表面上的水滴和液态金属液滴;(f)~(h)激光结构化硅表面上的水滴和液态金属液滴;(i)~(k)氟硅烷修饰的结构化硅表面上的水滴和液态金属液滴

Fig. 31. Supermetalphobicity of the femtosecond laser-induced micro/nanostructures on silicon surface[152]. (a)(b) Micro/naostructure on silicon surface induced by laser; (c)-(e) water droplet and liquid metal droplet on the smooth silicon surface; (f)-(h) water droplet and liquid metal droplet on the laser-structured silicon surface; (i)-(k) water droplet and liquid metal droplet on the fluorosilane-modified structured silicon surface

下载图片 查看所有图片

研究结果表明,超亲水的粗糙硅和修饰后的超疏水硅表面具有相似的超疏液态金属性。也就是说,对于固体表面,超疏液态金属性并不取决于超疏水性或超亲水性,液态金属的浸润性与水的浸润性完全不同。该结论也可以在PDMS基底表面上得到验证152。相比于高表面能的硅材料,PDMS的表面能较低,原始的PDMS本征疏水。液态金属液滴在平滑PDMS表面上的接触角为142.5°±0.5°,表明PDMS基底具有普通的疏液态金属性。未处理PDMS表面对液态金属展现出了极高的黏滞性,液态金属能够牢牢黏附于PDMS表面。基于与烧蚀硅表面相同的过程,利用飞秒激光可以在PDMS表面上形成微纳结构。结构化PDMS表面具有超疏水性,同时也具有超疏液态金属性。液态金属液滴在该表面上的接触角为158.3°±4.3°,滚动角为4.0°±1.0°。氧等离子体处理可以将结构化PDMS表面转变为超亲水状态。然而,与水的浸润性不同,氧等离子体处理对液态金属在结构化PDMS表面上的浸润性几乎没有影响。在处理后的表面上,液态金属依然保持着高的接触角(161.7°±1.7°)和低的滚动角(3.3°±0.7°)。飞秒激光结构化PDMS表面显示超疏水性,经氧等离子体处理后显示超亲水性;这两种表面都具有超疏液态金属性,都能够有效排斥液态金属。

图32所示,液态金属液滴与平滑硅表面之间有着很高的黏附力,所测黏附力高达247.70 μN。在硅表面上制备微纳结构后,黏附力显著降低。无论是具有超亲水性的粗糙硅表面,还是低表面能修饰后的超疏水粗糙硅表面,液态金属液滴的黏附力都很低,分别仅为1.78 μN和1.28 μN。同样,未经处理的平滑PDMS表面对液态金属液滴的黏附力达到了365.32 μN,而超疏水的粗糙PDMS表面和超亲水的PDMS表面对液态金属液滴的黏附力分别只有1.08 μN和1.26 μN。实验结果表明,不论是超疏水Si/PDMS表面还是超亲水Si/PDMS表面都可能表现出超疏液态金属性,因而超疏液态金属性与超疏水之间并没有等同关系。通常,表面的化学性质和微观形貌共同决定了固体材料表面的水浸润性。相比之下,在低表面能的疏水材料表面或在高表面能的亲水材料表面制备合适的微纳结构,都可以实现超疏液态金属性。因此,固体基底的化学性质似乎对超疏液态金属性的形成没有太大影响,而表面微观结构在赋予材料超疏液态金属性方面起着至关重要的作用。

图 32. 液态金属液滴在不同类型表面上的黏附力对比152

Fig. 32. Comparison of adhesive forces of liquid metal droplets on different types of surfaces[152]

下载图片 查看所有图片

图33描绘了液态金属液滴和水滴在粗糙微纳结构上浸润状态的异同。一般地,在氧气存在的情况下,液态金属表面会形成一层厚度为几纳米的钝化氧化层,将液态金属包裹在内。弹性氧化层对液态金属的流动性和浸润性有显著影响。薄氧化层的表面屈服应力可以达0.4~0.6 N/m153。只有当外加应力高于该临界值时,外部氧化层才会破裂,并允许内部液态金属流出。对于高表面能的基底,平滑的表面呈亲水状态,如图33(a)所示。激光诱导的粗糙微观结构可以增大水与固体表面的接触面积,使该表面更加亲水,符合Wenzel浸润状态,如图33(b)所示。如果将液态金属滴落在该粗糙表面上,液滴外部的氧化层将首先与表面微观结构的尖端接触。由于氧化层的表面屈服应力非常大,微观结构的尖峰很难穿透弹性氧化壳,因而液态金属无法刺入并进一步润湿固体表面的微结构。液态金属与结构化表面的接触发生在氧化壳与固体表面微观结构的界面处,其实是一种固/固接触模式,如图33(c)所示。液态金属只接触粗糙结构的顶部,该接触状态也可认为是Cassie浸润状态,尽管是弹性氧化物外壳而不是内部的液态金属直接接触了固体表面。极小的接触面积使得结构化表面对液态金属具有排斥性,即具有超疏液态金属性。对于低表面能的固体材料,其平滑的表面呈疏水性,如图33(d)所示。激光诱导的微观结构将疏水性放大为超疏水性(如图33(e)所示),水滴只接触粗糙结构的顶部,符合Cassie接触态。与高表面能材料表面的情况类似,液态金属的氧化层外壳也阻止了液态金属与该粗糙表面的直接接触,使液态金属液滴处于Cassie状态,如图33(f)所示。因此,微纳结构也使得低表面能材料表面具有超疏液态金属性。

图 33. 飞秒激光制备结构超疏液态金属性的形成原因152。(a)~(c)水滴和液态金属液滴在高表面能(本征亲水)材料表面上;(d)~(f)水滴和液态金属液滴在低表面能(本征疏水)材料表面上;(g)液态金属刺入均匀深孔结构的可行性分析

Fig. 33. Formation cause of supermetalphobicity of the femtosecond laser-prepared microstructures[152]. (a)-(c) A water droplet and a liquid metal droplet on the high-surface-energy (inherently hydrophilic) substrate; (d)-(f) a water droplet and a liquid metal droplet on the low-surface-energy (inherently hydrophobic) substrate; (g) feasibility analysis of liquid metal penetration into uniform deep microholes

下载图片 查看所有图片

液态金属能否刺入固体表面结构中,很大程度上取决于表面结构的尺寸、液态金属层的厚度、液态金属的浸润性、氧化物金属层的表面张力等。为了简化模型,如图33(g)所示,考虑最简单的情形:液态金属在具有均匀深孔的固体表面上。液态金属如果想刺入这些深孔中,弯液面受到的压力必须要超过一定的侵入压力值154-155。侵入压力的计算公式为

ΔP=2γR=-lγcosθadvS-4γcosθadvD

式中:γ为液态金属氧化层外壳的表面张力;R为液态金属弯月面的曲率半径;l为深孔口的周长;θadv为液态金属在固体表面上的前进角;S为孔面积;D为孔直径。ΔPγ成正相关。由于氧化液态金属的表面张力远高于水的表面张力,因而相比于水,液态金属很难刺入表面微纳结构间的空隙。另外,由式(4)可以得出:微孔直径越小,侵入压力越大。也就是说,表面微观结构的尺度越小,液态金属越难润湿结构化表面。据估计,表面微观结构的尺寸只需小于几百微米,便可以实现超疏液态金属性。

液态金属与固体材料表面的固/固接触方式使得液态金属的浸润性不同于水的浸润性。固体表面真正接触的是液态金属外层的固态氧化层,而不是内部的液态金属,因此,固体材料的表面化学性质对实现超疏液态金属性的影响不大。相反,表面微观结构可以显著减小液态金属与固体表面的接触面积,从而降低液态金属在材料表面的黏附性。实验结果和浸润模型分析均表明,构建表面微观结构对于获得超疏液态金属性至关重要。因此,只需要利用飞秒激光在固体材料表面构建合适的微/纳米结构便可以实现超疏液态金属性,即激光制备的微结构可以减小固体表面与液态金属之间的黏附。

利用飞秒激光加工技术灵活性强的特点,可以设计制备超疏液态金属图案微纳结构,进而实现液态金属图案化。例如,Zhang等156利用飞秒激光烧蚀在柔性PDMS薄膜上制备了微结构,如图34(a)所示。这些结构具有超疏液态金属性(如图34(b)所示),不会被液态金属黏附。如图34(c)所示,通过激光选择性作用于特定区域,制备了一种图案化结构,该结构包含了激光烧蚀区域和未处理区域。液态金属可以黏附在未烧蚀的平滑PDMS区域,但很难黏附在激光诱导的超疏液态金属结构区。如果将液态金属铺散在该图案化结构上并去除多余的液态金属后,液态金属只残留在激光未处理区域,从而形成了液态金属图案。液态金属图案的形状可以通过激光加工区域的设计实现精准控制,从而实现液态金属图案化(如图34(d)所示)。由于液态金属兼具柔韧性和导电性,因此,液态金属图案可以充当电路中的柔性导体,实现柔性电路的功能。图34(e)展示了最简单的液态金属线路,它们可以构成柔性微加热器156。当施加电压后,该器件可以在局部产生热(如图34(f)所示)。图34(g)所示是由液态金属图案组成的柔性微带贴片天线156-157,测得其工作频率为2.6 GHz,与设计值一致(如图34(h)所示)。鉴于液态金属出色的延展性和柔韧性,即使微加热器和天线被弯曲,也能正常工作。

图 34. 基于超疏液态金属性实现液态金属图案化156。(a)(b)飞秒激光在柔性PDMS薄膜上制备的微结构的形貌及超疏液态金属性;(c)制备液态金属图案的过程;(d)不同的液态金属图案;(e)(f)由简单液态金属线路构成的微加热器;(g)(h)基于液态金属图案制备的柔性微带贴片天线

Fig. 34. Patterning of liquid metals based on supermetalphobicity[156]. (a)(b) Mophology and supermetalphobicity of the femtosecond laser-induced microstructure on the PDMS membrane; (c) the process of preparing liquid metal pattern; (d) different liquid metal patterns; (e)(f) microheater consisting of a simple liquid metal circuit; (g)(h) flexible microstrip patch antenna based on liquid metal pattern

下载图片 查看所有图片

超疏液态金属微结构在减小液态金属与固体表面之间的黏附、控制液态金属的形状及设计液态金属图案等方面有着广阔的应用前景。例如,由液态金属组成的液体机器人在超疏液态金属表面上行走甚至跳跃时,机器人无须担心脚掌黏附在地面上而无法移动,也不用担心留下足迹导致连续体积损失。基于超疏液态金属结构制备的液态金属图案可以用于柔性电子器件中的柔性电路,具有高导电性、大柔韧性和强延展性等特点。

5 功能极端浸润性表面

5.1 可调黏滞性

与荷叶表面的极低黏滞超疏水性不同,红玫瑰花瓣(如图35(a))也具有超疏水性,水滴在红玫瑰花瓣上能够保持接触角为152.4°的小球形(如图35(d)所示)158,但红玫瑰花瓣对水滴具有极高的黏滞性,即使是将叶片翻转过来,水滴也会紧紧黏附在叶片表面(如图35(e)所示)。与众所周知的荷叶效应相比,这种具有极高黏滞性的超疏水现象通常被称为“玫瑰花瓣效应”。红玫瑰花瓣的高黏滞性是由其表面的微纳米结构引起的。红玫瑰花瓣表面分布着大量直径约为16 μm、高度为7 μm的微尺度小山丘状结构(如图35(b)所示),每个微丘的顶部呈现出角质层褶皱状纹理,沟壑的宽度约为730 nm(如图35(c)所示)。这些微/纳米结构提供了足够的粗糙度,使得水滴在红玫瑰花瓣上具有大的接触角。然而,与荷叶表面的微结构相比,红玫瑰花瓣表面上的微米尺度结构和纳米结构都具有更大的尺寸和更大的间隙,允许水滴进入并湿润表面微结构的凹槽部分,从而使得水滴能够黏附在花瓣表面。如图35(f)所示,水滴与红玫瑰花瓣的接触可以认为是处于Wenzel接触态(或者部分刺入微结构的Cassie-Wenzel过渡态),因而红玫瑰花瓣通常对水滴展现出极高的黏滞性。

图 35. 红玫瑰花瓣对水滴的高黏滞性158。(a)红玫瑰花瓣;(b)(c)红玫瑰花瓣上的表面微结构;(d)花瓣上的水滴形状;(e)水滴黏附在翻转的花瓣上;(f)水滴与红玫瑰花瓣表面结构的接触模型

Fig. 35. High adhesion of red rose petals to water droplets[158]. (a) Red rose petals; (b)(c) surface microstructure on red rose petal; (d) shape of a water droplet on the petal; (e) water droplet adhering to upside-down petal; (f) contact model between a water droplet and the surface microstructure of red rose petals

下载图片 查看所有图片

飞秒激光微加工技术具有灵活性强的特点,尤其擅长微图案设计。Zhang等159首先提出了通过飞秒激光选择性烧蚀材料表面特定区域,制备烧蚀区/未处理区复合图案结构,从而实现液滴黏滞性调节的策略。他们在硅表面上设计、制备了多种超疏水图案结构,这些图案由未进行激光处理的普通疏水三角形、圆和菱形区域以及其周围采用飞秒激光制备的超疏水微纳结构构成。通过改变周期性微图案的大小,实现了黏附性的调节。例如,随着超疏水区域面积占比的增大,整体表面对水滴的黏滞性逐渐减小。类似地,Yong等90基于更简单的激光交叉扫描方式,在PDMS表面上制备了“田”字形图案结构,如图36(a)所示。飞秒激光烧蚀的区域会形成表面微纳结构(如图36(b)所示),赋予该区域超疏水性和极低的黏滞性,而未烧蚀区域则保持本征普通疏水性以及对水滴的高黏附性。在固定正方形阵列周期(如200 µm)的条件下,可以通过改变未处理区域的边长来调节加工区域和未加工区域的面积比,从而实现可调黏滞性(如图36(c)所示)。当边长≤140 µm时,所制备的表面如同荷叶一样具有超疏水性和极低的黏滞性,水滴在稍微倾斜或抖动的样片表面上即可滚动(如图36(d)所示)。随着边长从140 µm增大到170 µm,水滴在样品上的滚动角从10°(如图36(e)所示)增大到54°(如图36(f)所示)。特别地,当边长继续增大到180 µm时,表面具有与红玫瑰花瓣相似的高黏滞性(如图36(g)所示),水滴能够紧紧黏附在所制备的表面上,即使是将样品竖立或翻转,水滴也不会掉下来(此种情况滚动角近似记为90°)。随着未处理区域的边长逐渐增大,滚动角从接近0°变化到90°,说明表面的黏滞性从极低变化到了极高状态(如图36(c)所示)。这种可调黏滞性是通过简单地改变激光作用区域的面积比例(占比)来实现的。基于不同黏滞性大小的超疏水表面,可以实现液滴无损转运、可控液滴反弹、液滴快速定位和捕获等功能。

图 36. 基于飞秒激光制备的图案化结构实现可调黏滞性。(a)(b)激光在PDMS表面上制备的图案化结构90;(c)水滴在不同图案化表面上的接触角和滚动角90;(d)~(g)图案化结构的超疏水性及水滴的滚动角90;(h)激光在玻璃表面上制备的图案化结构124;(i)水下油滴在不同结构上的接触角和滚动角124;(j)水下油滴与图案化结构的3D接触模型124

Fig. 36. Achievement of controllable adhesion based on the patterned structures designed by femtosecond laser. (a)(b) Laser-prepared patterned structure on PDMS surface[90]; (c) contact angle and sliding angle of water droplets on different patterned surfaces[90]; (d)-(g) superhydrophobicity of the patterned structures and sliding angle of a water droplet[90]; (h) different patterned microstructures prepared by laser on glass surface[124]; (i) contact angle and sliding angle of underwater oil droplets on different patterns[124]; (j) 3D contact model of an underwater oil droplet with a patterned structure[124]

下载图片 查看所有图片

可调黏滞性也可以通过飞秒激光诱导不同的表面微纳形貌来实现。Yong等88在飞秒激光烧蚀PDMS表面过程中选取合适的加工参数范围,使单脉冲烧蚀的微坑相互分离。通过改变扫描速度和扫描行间距来调节烧蚀坑之间的间距。随着激光烧蚀坑(直径约12.16 μm,深度约2.03 μm)的间距从大逐渐变小,烧蚀坑发生从相互分离、相切、轻度重叠到重度重叠状态的转变。在相互分离状态时,表面对水滴显示出超疏水性和高黏附性;在重度重叠状态时,水滴在所制备表面上的滚动角极小。可见,通过改变加工参数可以调节激光结构化表面上微结构的形貌,进而实现对水滴黏滞性的调节。通过该方法获得了黏滞性从极低到极高变化的超疏水表面。类似地,Fang等93也通过调节激光加工参数,在PTFE表面上获得了不同形貌的超疏水微纳结构。如图37所示,随着单脉冲激光烧蚀坑从重叠到分离逐渐变化,表面的平均粗糙度逐渐降低。与此同时,表面对水滴的黏滞性从极低变化到了极高,从而获得了不同黏滞性的超疏水表面。Long等160利用飞秒激光在铜板表面上沿“井”字形路径扫描,制备了周期性微山阵列状结构。通过选择不同的激光扫描速度和扫描次数,可以获得形貌不同的微结构。经低表面能修饰后,所制备表面具有了超疏水性。此外,比较深的微结构对水滴具有较低的黏滞性;随着结构逐渐变平滑,黏滞性逐渐增大。Yong等89基于飞秒激光刻蚀的方法,在PDMS基底上制备了凸三角阵列、微圆井阵列、圆柱阵列、凸菱形阵列以及凹三角锥阵列等一系列三维微图案结构。水滴在不同三维微结构表面上显示出了不同大小的滚动角。这些可调黏滞性的实现主要是由于液滴在不同形貌表面上所处的接触状态不同。通过改变所制备微结构的形貌,可使水滴从Cassie接触态逐渐变化到Wenzel接触态,黏滞性便从极低调制到了极高。

图 37. 飞秒激光在PTFE表面上诱导的不同形貌的超疏水微纳结构及其可调黏滞性93。单脉冲激光烧蚀坑的平均间距为:(a)4 µm,(b)10 µm,(c)11 µm,(d)18 µm

Fig. 37. Femtosecond laser-induced superhydrophobic micro/nanostructures with different morphologies on PTFE surface and their adjustable adhesion[93]. Average distance of the laser pluse-ablated pits: (a) 4 µm, (b) 10 µm, (c) 11 µm, and (d) 18 µm

下载图片 查看所有图片

这些实现水滴可调黏滞性的方法也可以推广到调控水下油滴的黏滞性。例如,Huo等125利用飞秒激光在玻璃表面上制备了圆阵列结构。在每个重复单元中,未处理的平滑圆区域被激光诱导的微纳结构包围,如图36(h)所示。平滑的普通疏油区域对油具有高的黏滞性,而周围飞秒激光烧蚀区域则显示出了极低黏滞的水下超疏油性。在水下,液滴在所制备表面上主要接触平滑的圆区域,如图36(j)所示。通过增大每个单元中圆形区域的直径,即增大平滑区域的面积分数,可以实现对油滴黏滞性从极低到极高的调节,如图36(i)所示。Yong等124通过改变激光扫描速度和扫描间隔在玻璃载玻片上通过飞秒激光制备了不同形貌的微纳结构,如图38所示。这些微纳结构在水下都具有超疏油性。随着扫描速度和扫描间隔增大,表面粗糙度逐渐降低。水下油滴在所制备表面上的接触状态发生了Cassie态→过渡态→Wenzel态的逐渐转变,测得油滴滚动角从3.5°(如图38(a)所示)增大到25.5°(如图38(b)所示)再增到90°(如图38(c)所示),这说明激光结构化表面对油滴的黏附性从低到高逐渐增大。

图 38. 飞秒激光在玻璃表面上制备的形貌不同的微结构及其可调油黏滞性124。(a)激光脉冲烧蚀坑严重重叠,形成均匀的微纳结构;(b)脉冲烧蚀坑轻微重叠,可隐约看到烧蚀坑的痕迹;(c)脉冲烧蚀坑相互分离,坑之间存在未烧蚀区域。前三列为激光诱导的微结构,第四列为水下油滴的浸润状态,插图为水下油滴在对应表面上的浸润性

Fig. 38. Morphology and controllable oil-adhesion of the femtosecond laser-prepared microstructures on glass surface[124]. (a) Laser pulse-ablated craters overlapping heavily to form uniform micro/nanostructure; (b) laser pulse-ablated craters are overlapping slightly and ablation craters can be faintly seen; (c) laser pulse-ablated craters separating from each other with unablasted areas between pits. The first three columns show the laser-induced microstructures, the fourth column shows the wettability state of underwater oil droplets, and the insets show the wettability of underwater oil droplets on the corresponding surfaces

下载图片 查看所有图片

5.2 各向异性浸润性

露珠在水稻叶(如图39(a)所示)表面上并不是理想的球形161,而是沿水稻叶脉方向呈拉长的椭球状。此外,水滴更易沿叶脉方向滚动而流到根部,有利于水稻的成活。不同于荷叶和红玫瑰花瓣的各向同性超疏水性,水稻叶具有独特的各向异性浸润性86161。各向异性浸润性主要表现为液滴沿不同方向有不同大小的接触角和滚动角。在静态浸润性方面,水滴在水稻叶表面上沿垂直叶脉方向的接触角约为153°,沿平行叶脉方向的接触角约为146°,如图39(e)所示。在动态浸润性方面,液滴沿垂直叶脉方向的滚动角为9°,沿平行叶脉方向的滚动角为3°,如图39(f)所示。研究发现,这种各向异性浸润性主要是由水稻叶表面上分级微结构的各向异性排列引起的。水稻叶片表面上分布着大量的微米/纳米两级乳突状结构,如图39(b)所示,这些乳突状结构沿叶边缘方向有序整齐地排列,但沿垂直叶边缘方向则随机分布着。后来,Wu等161进一步发现,水稻叶表面上还存在一种特殊的亚毫米凹槽阵列微观结构(如图39(c)、(d)所示),凹槽宽度为200 µm,深度为45 µm。这些凹槽沿平行于叶脉的方向延伸,这是水滴的主要滚动方向。水稻叶表面具有三级几何结构,其中包括了亚毫米级的宏观沟槽、微米尺度结构和纳米尺度结构。微纳米分级结构是实现超疏水性的关键,而宏观微沟槽阵列在沿垂直叶脉方向产生了能量势垒,造成了各向异性滚动性。因而,宏观的各向异性浸润性是各向异性微观结构的外在表现形式。静态各向异性浸润性(接触角的大小随方向变化)和动态各向异性滚动性(滚动角的大小随方向变化)是各向异性浸润性的不同方面。

图 39. 水稻叶表面的各向异性浸润性161。(a)水稻叶;(b)水稻叶表面的微纳米结构;(c)(d)水稻叶表面上的亚毫米沟槽结构;(e)沿垂直和平行叶脉方向的接触角;(f)沿垂直和平行叶脉方向的滚动角

Fig. 39. Anisotropic wettability of rice leaf surfaces[161]. (a) Rice leaves; (b) micro/nanostructures on the the surface of rice leaves; (c)(d) submillimeter grooves on the surface of rice leaves; (e) contact angles along the directions perpendicular and parallel veins; (f) sliding angles along the directions perpendicular and parallel veins

下载图片 查看所有图片

加工灵活性强的特点使得飞秒激光可以轻易制备出各种各向异性微纳结构,并在这些各向异性结构上实现各向异性浸润性。Chen课题组98-100最早研究了飞秒激光制备的条纹结构和三角形微结构对水滴形态的调控作用,实现了水滴从各向同性到各向异性的转变。Yong等91利用最简单的大间距激光扫描方法在PDMS表面上制备了周期性的微沟槽阵列结构(如图40(a)所示)。每一条激光扫描线均产生一条宽度为12.17 µm、深度为8.57 µm的沟槽,沟槽内部修饰着更精细的激光诱导纳米颗粒。当扫描间隔较大时,所形成的微沟槽彼此分离。水滴在所制备微沟槽阵列结构上会被沿着沟槽方向拉长,如图40(b)所示。例如,在周期为150 µm的微沟槽阵列上,水滴沿着沟槽方向的接触角为116.5°±2.5°(如图40(c)所示),而沿着垂直方向的接触角为134.8°±2.5°(如图40(d)所示)。沿不同方向的接触角差异(18.6°)说明该微沟槽阵列结构具有各向异性浸润性。这种静态各向异性浸润性主要是由各向异性微结构引起的能量势垒导致的。未烧蚀平滑区域与微沟槽交界处存在的能量势垒会阻碍水滴向前铺展,即阻碍水滴沿垂直方向铺展,而沿平行于沟槽方向不存在这样的势垒,即三相接触线沿沟槽方向是连续的。所以,平行方向更有利于水滴向前蔓延,进而水滴在飞秒激光直写微沟槽阵列结构上沿平行方向被拉长。在动态浸润性方面,水滴更容易沿着沟槽方向滚落下去,与水稻叶非常类似。例如,在周期为25 µm的微沟槽阵列上,水滴沿平行于沟槽方向的滚动角为31°(如图40(e)所示),而沿垂直于沟槽方向的滚动角为76°(如图40(f)所示)。两个方向的滚动角差异达到了45°,而水稻叶上的水滴在两个方向的滚动角只相差了6°。三相接触线对液滴的滚动具有重要影响:液滴沿平行于沟槽方向运动时,三相接触线是连续变化的;然而,液滴沿垂直于沟槽方向运动时,液滴要跨过一条条微沟槽,三相接触线是不连续变化的,呈跳跃性,并且三相线更长。通常,不连续的三相线变化会带来更强的黏滞效应,甚至会将液滴钉扎住,因而水滴更容易沿平行于沟槽方向滚落下去。

图 40. 飞秒激光直写的平行微沟槽阵列结构的各向异性浸润性91。(a)微沟槽阵列结构;(b)水滴在微沟槽阵列结构上的俯视图;(c)(d)水滴沿平行和垂直于沟槽方向的接触角;(e)(f)水滴沿平行和垂直于沟槽方向的滚动角

Fig. 40. Anisotropic wettability of the femtosecond laser-written parallel microgroove array[91]. (a) Morphology of the microgroove array; (b) top view of a water droplet on the microgroove array; (c)(d) different contact angles of water droplets along the directions parallel and perpendicular to grooves; (e)(f) different sliding angles of water droplets along the directions parallel and perpendicular to grooves

下载图片 查看所有图片

当然,也可以通过飞秒激光刻蚀制备尺寸更大的凹槽阵列结构来实现各向异性浸润性。利用飞秒激光持续多次扫描材料表面特定区域,使材料被去除,形成低于表面的凹陷结构。一般地,刻蚀深度与激光扫描次数成正比,因而可以通过多次扫描来增加刻蚀深度。Long等162利用飞秒激光在铜表面上制备了百微米尺度的周期性凹槽结构(如图41(a)、(b)所示),凹槽的宽度、深度以及周期都可以被精确设计。同样,他们也发现水滴更倾向于沿着沟槽方向滚落下去,如图41(c)所示。

图 41. 飞秒激光刻蚀凹槽结构的各向异性浸润性。(a)激光在铜表面上制备的超疏水凹槽阵列结构162;(b)铜表面上凹槽结构的三维形貌和截面轮廓162;(c)液滴沿平行和垂直于凹槽方向的滚动角不同162;(d)激光在PDMS表面上制备的水下超疏油凹槽结构164;(e)PDMS表面上凹槽结构的三维形貌和截面轮廓164;(f)各向异性滚动性164;(g)水下油滴在超疏油凹槽上的不同情形164

Fig. 41. Anisotropic wettability of the grooves etched by femtosecond laser. (a) Superhydrophobic groove array prepared by laser on copper surface[162]; (b) three-dimensional morphology and cross-sectional profile of the groove structure on the copper surface[162]; (c) different sliding angles of droplets rolling along the directions parallel and perpendicular grooves[162]; (d) underwater superoleophobic grooves prepared by laser etching on the PDMS surface[164]; (e) three-dimensional morphology and cross-sectional profile of the groove structure on the PDMS surface[164]; (f) anisotropic rolling property[164]; (g) different situations of underwater oil droplets on the laser-etched superoleophobic grooves[164]

下载图片 查看所有图片

与水滴的浸润性类似,水下油滴在各向异性微纳结构上也具有各向异性油浸润性。Yong等163利用飞秒激光直写在硅表面上制备了分离的周期性微沟槽阵列结构,油滴在所制备表面上也会沿平行于沟槽方向被拉长。例如,在周期为450 µm的微沟槽阵列上,油滴沿平行于沟槽方向的接触角为135.7°,沿垂直于沟槽方向的接触角为155.5°。两方向上差异明显的接触角说明该表面具有各向异性油浸润性,油滴更倾向于沿着沟槽方向铺展。各向异性的程度可以通过改变微沟槽阵列的周期从0°调制到19.8°。Li等122利用飞秒激光烧蚀在硅表面上制备了微结构-平滑区-微结构区的带状结构。激光诱导结构具有水下超疏油性,使得油滴只能沿带状结构的平滑区域运动。Cheng等164利用飞秒激光在PDMS表面刻蚀深槽,并结合氧等离子体处理制备了水下超疏油凹槽结构(如图41(d)、(e)所示)。在水环境中,稍微倾斜样品,便可以使油滴沿凹槽轨道滚动;然而,若要使油滴沿垂直于凹槽方向滚动,则需要倾斜更大的角度(如图41(f)所示)。这说明油滴更易于沿着凹槽方向运动。这是由于水下油滴横跨在凹槽结构上(如图41(g)所示),当油滴沿凹槽向前运动时不会受到阻碍,而沿垂直于凹槽方向运动时,必须要克服凹槽侧壁高度造成的势垒才能翻过凹槽间隆起的埂,而要克服该势垒就需要更大的倾斜角度。这种各向异性结构使得油滴只能沿着所设计的凹槽方向运动,不易脱轨。

与水稻叶两方向(相互垂直的两个方向)的各向异性浸润性不同,蝴蝶翅膀(如图42(a)所示)除了具有超疏水性外,还表现出单向的黏附性165。即使在雨中飞行,蝴蝶也能够抖落翅膀上的雨滴。蝴蝶翅膀上覆盖着一层长度为150 µm、宽度为70 µm的方形鳞片状结构(如图42(b)所示),微米鳞片沿着身体中轴线向外辐射的方向(RO方向)重叠着。每个微米鳞片由宽度为184.3 nm、间隙为585.5 nm的脊状纳米条纹组成(如图42(c)所示),在纳米条纹上,更精细的纳米尖刺结构沿RO方向逐级堆叠。如图42(d)所示,当蝴蝶翅膀稍微向下倾斜约9°时,翅膀上的水滴便可以很容易地沿着RO方向滚落下去。但在相反的方向上,即使翅膀完全竖立起来,液滴也会牢牢黏附在蝴蝶翅膀上。当翅膀向下倾斜时,结构化的微米鳞片在空间上相互分离,并且纳米尖端指向向下的方向。在这种情况下,空气能够被俘获在脊状纳米条纹和纳米尖端之间的空隙中,液滴只接触纳米尖端的顶部,导致了较小的接触面积和不连续的三相接触线。因而,液滴在向下倾斜的翅膀上处于Cassie接触状态,翅膀对水滴展现出低的黏滞性,所以液滴很容易滚落下去(如图42(e)所示)。相反,当翅膀向上倾斜时,柔韧的微米鳞片和纳米尖端会紧密排列,液滴在这样排布的结构上处于Cassie-Wenzel过渡接触态(如图42(e)所示),当液滴试图沿RO反方向运动时,会形成一种准连续的三相接触线。准连续的三相接触线会对液滴产生高附着力,使得液滴紧紧钉扎在翅膀上。蝴蝶翅膀的这种单方向各向异性黏滞性主要是由重叠的微米鳞片和纳米尖端的方向性排布引起的。

图 42. 蝴蝶翅膀和豚鱼表皮上水滴和水下油滴的单方向黏滞性。(a)蝴蝶165;(b)(c)蝴蝶翅膀上的微结构165;(d)蝴蝶翅膀上的液滴在相反方向上不同的黏附性165;(e)蝴蝶翅膀单方向黏滞性的机制165;(f)豚鱼166;(g)豚鱼表皮上的微结构166;(h)水下油滴在豚鱼表皮上166;(i)水下油滴在豚鱼表皮相反方向上不同的滚动角166

Fig. 42. Unidirectional adhesion of butterfly wings and filefish skin to water droplets and underwater oil droplets. (a) Butterfly[165]; (b)(c) microstructure on butterfly wings[165]; (d) different adhesion of droplets on butterfly wings in opposite directions[165]; (e) mechanism of unidirectional adhesion on butterfly wings[165]; (f) filefish[166]; (g) microstructures on the skin of the filefish[166]; (h) underwatrer oil droplet on the skin of the filefish[166]; (i) different sliding angles of underwater oil droplets on the skin of the filefish along opposite directions[166]

下载图片 查看所有图片

与蝴蝶翅膀的单方向黏附性类似,豚鱼(如图42(f)所示)表皮具有各向异性水下超疏油性,表现为油滴在相反方向上的不均等滚动趋势166。不同于常规的鱼类,豚鱼的表皮由高度约为383.7 μm、直径约为51.6 μm的刺状结构组成(如图42(g)所示)。特别地,这些刺结构的末端朝鱼尾方向弯曲。水下油滴在豚鱼表皮上的接触角为156.1°(如图42(h)所示)。当鱼尾向下倾斜13.4°时,油滴便可以滚动;而沿相反方向,当鱼头向下倾斜22.5°时液滴才能够滚动(如图42(i)所示)。这说明油滴更容易沿鱼尾方向滚动,与尖刺末端倾斜的方向一致,即油滴更容易顺着尖刺弯曲的方向滚落下去。油滴的这种单方向黏滞性是由尖刺结构弯曲的末端引起的。各向异性拒油性使得鱼皮在受油污染的海水中具有定向自清洁能力,避免了油污在鱼头部积聚。

受蝴蝶翅膀上方向性微结构的启发,Yong等167利用飞秒激光在PDMS表面上设计制备了一种等腰三角形微阵列结构。未处理的三角形区域表面平滑,呈普通的疏水性,并且被激光诱导的具有极低黏滞性超疏水微结构包围。这种三角形阵列结构与蝴蝶翅膀上相叠压的鳞片状结构有些类似。等腰三角形的顶角指向同一个方向,图案化结构沿三角形中轴线左右两侧对称,且上下不对称,整体呈现方向性图案结构。水滴在所制备表面上的接触角大于150°,沿等腰三角形顶角方向的滚动角为56.5°,而沿反方向的滚动角为77.5°。液滴沿两个相反方向的滚动角差异达到了21°,说明水滴更倾向于沿着等腰三角形阵列的顶角方向滚落,而较难沿相反方向滚落。这种方向性黏滞性主要来源于疏水的三角形阵列的方向性排布。特殊的结构排布使得水滴沿着两个相反方向运动时的三相接触线形状完全不同,因此液滴沿特定方向比沿相反方向更易滚动。

Fang等168结合水稻叶的两方向各向异性浸润性和蝴蝶翅膀的单方向黏滞性,基于飞秒激光微加工技术制备了一种周期性的微台阶状结构,实现了三个方向的各向异性浸润性。他们先利用飞秒激光在PDMS表面刻蚀出凹槽阵列结构,然后在每个凹槽内刻蚀出三维阶梯状结构,如图43(a)所示。刻蚀深度由激光扫描次数控制。凹槽阵列使得液滴沿着凹槽方向比沿着垂直于凹槽方向更容易滚落下去,如图43(c)所示。对于单个台阶状微结构,水滴沿着下台阶方向比沿着相反方向(上台阶方向)更容易滚落,如图43(d)、(e)所示。该台阶凹槽阵列微结构兼具水稻叶和蝴蝶翅膀的各向异性浸润性特点,水滴在所制备表面上沿三个不同方向具有明显不同的滚动角,如图43(b)所示。通过加工不同的沟槽宽度、深度以及台阶个数,可以改变三个方向上水滴的滚动角,即可以实现二维和一维各向异性滚动性设计。这种多方向各向异性浸润性有助于实现微流体的定向操作,例如微液滴的定向无损移动(如图43(f)所示)。

图 43. 飞秒激光制备的台阶状凹槽阵列微结构实现的三个方向各向异性浸润性168。(a)所制备的台阶状微结构;(b)水滴在三个方向上不同的滚动角;(c)水滴沿平行于凹槽方向滚动;(d)水滴沿下台阶方向滚动;(e)水滴沿上台阶方向滚动;(f)微流体定向操作

Fig. 43. Three-directional anisotropic wettability of step-shaped groove array prepared by femtosecond laser etching[168]. (a) Step-shaped grooves; (b) different sliding angles of water droplets in three different directions; (c) water droplet rolling in the direction parallel to grooves; (d) water droplet rolling in the direction of the lower step; (e) water droplet rolling in the direction of the upper step; (f) directional manipulation of microfluid

下载图片 查看所有图片

Wu等169利用飞秒激光倾斜烧蚀的方法一步直接制备了一种倾斜微壁阵列结构。如图44(a)所示,将飞秒激光倾斜聚焦在PDMS样品表面,移动样品使激光在表面上烧蚀出倾斜的微沟槽。斜槽宽度为50 μm,深度为100 μm,周期为150 μm,倾斜角度为45°,如图44(b)所示。斜壁结构上同时也修饰着激光烧蚀诱导的纳米结构。这种倾斜微壁阵列类似蝴蝶翅膀上的鳞片叠压结构。水滴在所制备表面上的接触角为156°,表面呈超疏水状态。研究发现,当样品表面沿着微壁阵列倾斜的方向来回振动时,表面上的液滴便会沿着倾斜方向定向运动,如图44(c)所示。然而,沿其他方向振动时,并不会引起液滴的输运。例如:当施加平行于微壁方向的水平振动时,液滴将在原地左右振荡,如图44(d)所示;当施加垂直于样品表面的纵向振动时,液滴将在原地上下振荡,如图44(e)所示。因而可以通过在垂直于微壁方向上施加水平振动来实现液滴的高速传输。单方向倾斜的微壁结构引起了液滴与微壁两侧接触面积的差异,该差异所引起的黏滞阻力造成了振动过程中液滴的定向运动。液滴的移动速度可达到22.86 mm/s,甚至纳升(≈53 nL)级的液滴也能被操作。通过飞秒激光设计圆形、弯曲和“L”形倾斜微壁阵列,可以实现一些特定的微液滴运动操控,如收敛/扩散、爬升和90°急转弯。

图 44. 振动辅助飞秒激光制备的倾斜微壁阵列结构实现液滴的定向输运169。(a)激光加工示意图;(b)倾斜微壁阵列结构;(c)施加垂直于微壁方向的水平振动;(d)施加平行于微壁方向的水平振动;(e)施加垂直于样品表面的纵向振动

Fig. 44. Vibration-assisted directional droplet transport on the femtosecond laser-written inclined microwall array[169]. (a) Diagram of laser processing; (b) morphology of the inclined microwall array; (c) horizontal vibration perpendicular to the direction of the microwall; (d) horizontal vibration parallel to the direction of the microwall; (e) vibration perpendicular to the sample surface

下载图片 查看所有图片

6 智能可调浸润性

浸润性由固体表面的化学组成和微观几何结构共同决定。当这两个因素确定不变时,材料表面将保持特定不变的浸润特性。然而,单一固定的浸润性已经无法满足复杂多变的应用需求,实现浸润性的智能转换可以拓展极端浸润性材料的应用场景。智能可切换浸润性材料能够随着外部刺激或环境变化可逆地改变宏观浸润特性,这一特性被称为“超越自然的性质”。通过外界刺激来改变飞秒激光制备的极端浸润性微纳结构的表面化学组成、表面形貌或所处环境等,可以可逆地改变材料表面的浸润性,实现浸润性的智能可逆调控。

6.1 表面化学可逆调谐

除了众所周知的光催化作用外,TiO2等金属半导体氧化物的浸润性可以通过交替的紫外光照射和黑暗储存在亲水性和疏水性之间切换。结合表面粗糙微纳结构对浸润性的放大作用,可以实现不同极端浸润性的可逆转换。飞秒激光烧蚀钛表面不但能够在其表面诱导出微纳复合结构,还会将钛氧化,在钛材料表面形成粗糙的二氧化钛层,如图16(a)~(d)所示。Yong等77发现,黑暗存储后,水滴在所制备二氧化钛结构上的接触角为154.5°,此时该表面显示超疏水性,如图45(a)所示。有趣的是,当将该表面在波长为370 nm的紫外光下照射40 min后,水滴的接触角会降低至2.5°,说明该表面转变到了超亲水状态,如图45(b)所示。如果将样品再次在黑暗环境中存储2 d后,该表面可以恢复到最初的超疏水状态。可见,基于黑暗存储和紫外光照射,该表面可以实现超疏水与超亲水之间的智能可逆转换。由于水下油浸润性与材料的水浸润性密切相关,因而该方法也可以用于实现水下油浸润性的转变。在水下,油滴接触黑暗存储后的样品表面后迅速扩散开,油滴的接触角最终只有4°,如图45(c)所示。此时,表面显示水下超亲油性。当样品经过紫外光照射后,水下油滴可以在该表面上保持近似球形,油滴的接触角达到了160.5°(如图45(d)所示),而滚动角只有1°。这说明紫外光照射使材料表面转变为水下超疏油状态。黑暗存储后,样品可以从水下超疏油状态恢复到水下超亲油状态。通过交替的黑暗存储和紫外光照射,飞秒激光诱导的二氧化钛粗糙表面可以在超疏水(水下超亲油)和超亲水(水下超疏油)之间重复多次可逆切换(如图45(e)所示)。图45(f)~(k)解释了这种浸润性转变的内在机制。飞秒激光烧蚀形成了一层粗糙的覆盖在基底表面上的二氧化钛层(如图45(f)所示),黑暗存储后,表面表现出超疏水性和对水滴极低的黏附性,水滴处于Cassie接触状态,只接触粗糙结构的顶部(如图45(h)所示)。在水下,粗糙表面微结构与水环境之间存在被俘空气层,油滴可以沿该空气层铺散开,因而表面具有水下超亲油性(如图45(j)所示)。二氧化钛是一种典型的光响应金属半导体氧化物材料。如图45(g)所示,当紫外光照射时,电子-空穴对会在二氧化钛表面上形成,空穴与晶格氧结合形成不稳定的氧缺位,从而进一步解离、吸附大气中的水分形成高表面能的羟基。羟基具有较高的表面能,加之表面的微观结构比较粗糙,因而表面具有超亲水性(如图45(i)所示)。该超亲水表面也会在水下呈现超疏油性(如图45(k)所示)。相反,当将表面置于黑暗环境中时,由于氧吸附过程在热力学上更稳定,新嫁接上去的羟基官能团很容易被空气中的氧所取代(如图45(g)所示)。随着存放时间延长,羟基不断被去除,激光结构化表面的疏水性不断增强,直至恢复到最初的超疏水和水下超亲油状态(如图45(h)、(j)所示)。可控的表面化学基团变化和分级粗糙微结构的共同作用赋予了飞秒激光烧蚀钛表面超疏水-超亲水性以及水下超亲油-超疏油性的光响应可逆转变,前者使二氧化钛层在亲、疏水性之间可逆切换,后者则增强了浸润性。

图 45. 飞秒激光制备的粗糙二氧化钛表面结构的光响应可逆浸润性77。(a)~(d)水滴和水下油滴在黑暗存储和紫外光照射后的结构化表面上的浸润性;(e)可逆调谐浸润性的可重复性;(f)~(k)浸润性可逆转变的内在机制

Fig. 45. Photoresponsive reversible wettability transformation of the rough TiO2 surface microstructure prepared by femtosecond laser[77]. (a)-(d) Wettability of a water droplet and an underwater oil droplet on the structured surface after dark storage and UV light irradiation; (e) repeatability of reversible wettability transformation; (f)-(k) underlying mechanism of wettability reversible transformation

下载图片 查看所有图片

这种光响应的超疏水-超亲水可逆转变也可以在飞秒激光烧蚀的锌表面上实现104。除了水的浸润性和水下油的浸润性,光响应也可以实现水下气泡浸润性的可逆转换。例如,Jiao等170同样利用飞秒激光在钛材料表面上制备了多尺度的二氧化钛微纳结构。所制备的表面在黑暗环境中加热处理0.5 h后在水下显示超亲气性,水中气泡在该表面上的接触角为4°。此时的表面具有捕获水中气泡的能力。如果将该材料浸入乙醇中并用紫外光照射1 h,则表面会转变到水下超疏气状态,气泡在该表面上的接触角达到了156°。该表面在黑暗环境中加热后可再次恢复水下超亲气性。因而,通过在黑暗环境中加热以及在乙醇中采用紫外光照射,激光结构化表面在水中可以显示出可切换的气泡浸润性。气泡浸润性可逆转换的机理同样是Ti—OH和Ti—O之间的化学转化。

氧等离子体处理是一种将PDMS聚合物从疏水状态转变为亲水状态的有效方式。飞秒激光在PDMS表面上制备的微纳结构能够使表面呈现超疏水性。在激光烧蚀后的PDMS表面上,水滴的接触角为155.5°,滚动角为2°。当将该表面浸入水中时,油滴或气泡一旦与表面接触,便会迅速扩散开。最终,水下油滴的接触角为6.5°,气泡的接触角为0°。因此,结构化PDMS表面具有超疏水、水下超亲油性和水下超亲气性71。氧等离子体照射可将PDMS表面上原有的疏水—CH3基团转化为亲水的—OH基团。研究发现,短时间(30 s,55 W)氧等离子体处理可以将飞秒激光结构化的PDMS表面转变到超亲水状态。此时水滴可以充分润湿处理后的表面,接触角只有4.5°;在水中,油滴和气泡在该表面上的接触角分别达到了158°和156°。这说明氧等离子体处理后的表面具有超亲水性、水下超疏油和超疏气性71。如果想要恢复最初的超疏水、水下超亲油/气状态,只需要将氧等离子体处理后的样品放置在空气中足够长时间即可,此时PDMS内部的低表面能—CH3基团会迁移到表面处。由于氧等离子体处理的时间很短,几乎不会改变PDMS表面的微观形貌。因此,这种基于等离子体处理的浸润性可逆变换主要是由PDMS表面的化学基团变化导致的。

Zhang等171报道了一种基于飞秒激光制备pH响应可切换浸润性表面的有效方法。图46(a)所示为表面的制备过程。飞秒激光烧蚀使铜表面具有多尺度微纳结构,如图46(b)所示。通过化学修饰,在结构化表面上修饰烷基和羧酸基团。—CH2和—CH3是表面自由能较低的疏水性基团,而—COOH由于范德瓦耳斯力的作用是强亲水性基团。疏水性—CH3基团和亲水性—COOH基团之间存在竞争关系。羧酸基团是一种对pH比较敏感的化学基团。在酸性溶液中,羧基会被质子化,因此,甲基在浸润状态的转变上起主导作用,如图46(e)、(f)所示。该疏水基团使得表面具有疏水性(如图46(c)所示),而在水下具有亲油性。由于水分子与甲基之间的排斥作用,油滴很容易进入甲基与水分子之间的空间。在pH=2的酸性溶液中,该表面可以实现准超亲油性,水下油滴在该表面上的接触角为12°(如图46(d)所示);相反,在碱性溶液中,离子化的羧基逐渐占据主导地位,能够与水分子形成氢键(如图46(g)、(h)所示),因而表面对碱性液滴显示亲水性(如图46(c)所示),在水下具有疏油性。碱性水溶液很容易润湿所制备的表面,填充在粗糙结构间的碱性溶液对油滴具有排斥作用。在pH=12的碱性水溶液中,油滴的接触角达到了157°,说明该表面在碱性溶液中具有超疏油性(如图46(d)所示)。通过调节水溶液的pH可以调节游离羧基与非游离羧基的比例,从而实现水下准超亲油性与超疏油性的可逆转变。这种pH响应的水下超亲油-超疏油表面对二氯乙烷、癸烷、己烷、氯仿、十二烷、十六烷、液体石蜡、石油醚和原油等一系列有机液体均表现出可调浸润性。

图 46. 飞秒激光制备的pH响应可转换浸润性表面171。(a)pH响应浸润性表面的制备流程;(b)飞秒激光在铜表面上制备的微纳结构;(c)酸性液滴和碱性液滴在制备表面上的不同浸润性;(d)所制备表面在酸性溶液和碱性溶液中的不同油浸润性;(e)~(h)液体环境中所制备表面的油浸润性随液体pH变换的机制

Fig. 46. pH-responsive switchable wettability of the femtosecond laser-designed surface[171]. (a) Preparation process of the pH-responsive wettability surface; (b) femtosecond laser-induced micro/nanostructure on the copper surface; (c) different wettabilities of acidic and alkaline droplets on the structured surface; (d) different oil wettabilities of the prepared surface in acidic and alkaline solutions; (e)-(h) pH-responsive oil wettability switching mechanism of the structured surface in liquid environment

下载图片 查看所有图片

在上述浸润性可逆转变过程中,材料表面上的多级微纳结构并没有发生改变,随着外界刺激响应改变的只是表面上的化学组成或化学键。

6.2 表面微形貌可逆调谐

表面微观形貌是除了化学组成以外能够影响表面浸润性的另一主要因素。形状记忆聚合物(SMP)是一类在外界刺激下能够在原始形状和临时形状之间相互转换的聚合物材料,如图47(a)所示。Bai等107利用飞秒激光刻蚀的方法在热响应型环氧树脂形状记忆聚合物表面制备了微柱阵列结构,如图47(b)所示。微柱的高度为45 μm,顶部直径约为20 μm,柱间距约为40 μm。每个微柱表面均覆盖着均匀的微纳结构。经氟硅烷修饰后,该结构呈现超疏水性,测得水滴的接触角为153.5°,水滴的滚动角只有7°。这说明该表面对水滴具有极低的黏滞性。如图47(a)所示,形状记忆聚合物的形状记忆效应使得微柱阵列的形貌可以发生可逆变化。将样品加热到80 ℃并向微柱阵列施加平面剪切压力,冷却后,微柱将变为倾倒状态,如图47(c)所示。此外,由于压力的作用,微柱表面上的部分微纳结构会被压平,变得平坦。微观形貌的变化改变了材料表面的宏观浸润性。与原始竖立的微柱结构相比,倾斜微柱的超疏水性有所降低,测得水滴的接触角减小到142°,而滚动角增大到20°。这一结果表明倾斜微柱阵列对液滴具有较高的黏滞性,这是由于倾斜的微柱增大了液滴与固体表面的接触面积。如果将变形的微柱阵列在80 ℃下再加热约3 min(无按压),微柱会自发竖立起来,恢复初始形貌(如图47(b)所示)。相应地,表面也恢复到原始的极低黏滞超疏水状态。通过交替的按压和加热处理,微柱阵列结构表面可以在超疏水性和普通疏水性之间可逆切换。即使经过10个循环,表面依然保持着优异的超疏水性,所测水滴的接触角为152.3°,滚动角为9°。这种可逆性和可重复性表明,飞秒激光结构化的形状记忆聚合物表面具有优异的超疏水记忆性能。进一步,结合各向异性沟槽结构和形状记忆材料的记忆形变特性,通过在形状记忆聚合物表面构筑微沟槽结构,获得了黏附性智能可调的各向异性超疏水表面76

图 47. 飞秒激光制备的形状记忆微结构及其可调浸润性107。(a)微观形貌改变方法示意图;(b)飞秒激光刻蚀制备的微柱阵列结构;(c)倾斜微柱阵列结构;(d)微柱形状可调的内在机制;(e)(f)液滴在竖直和倾斜微柱阵列上的浸润状态

Fig. 47. Shape memory microstructure prepared by femtosecond laser and its switchable wettability[107]. (a) Schematic diagram of the method of changing microscopic morphology; (b) femtosecond laser-etched micropillar array; (c) inclined micropillar array; (d) switching mechanism of the micropillars; (e)-(f) wetting state of a droplet on vertical and inclined micropillars

下载图片 查看所有图片

图47(d)所示,形状记忆聚合物通常由永久的网络结构和可逆相构成。永久网络是通过分子链之间的化学交联或物理交联形成的,它支撑起了记忆聚合物的原始形状。可逆相对外部刺激比较敏感,可以抑制或激活分子链的迁移,从而可以决定临时形状的固定或恢复。飞秒激光烧蚀制备的微柱阵列为原始形状,此时分子链构型的熵最高,因而处于热力学稳定状态。水滴仅能与微柱阵列顶端的纳米结构接触,因此表面具有超疏水性并且对液滴显示出极低的黏滞性(如图47(e)所示)。当温度超过临界玻璃化温度(Tg)时,可逆相的分子链被激活,聚合物由玻璃态转变为高弹态,弹性模量急剧下降了约3个数量级。此时,分子构型变为非平衡态,在外力作用下微柱阵列很容易发生形变。若保持按压微柱的操作,待冷却后,这种形状会被临时锁定。此时的形状处于低熵的非平衡状态。粗糙度的降低直接导致表面与水的接触面积增大,从而导致超疏水性下降,对液滴的黏附性升高(如图47(f)所示)。当表面温度被再次加热到临界玻璃化温度以上时,可逆相的分子链重新被激活。如无按压处理,储存在形变中的熵能被释放,使得微柱阵列从倾斜状态恢复到原始的竖立状态。相应地,微柱结构表面的浸润性也恢复到初始的极低黏滞超疏水状态。

Wu课题组172-174制备了一系列磁响应微结构。采用飞秒激光在PTFE平板上制备凹槽结构,然后将包含磁响应颗粒的硅胶溶液倾倒在所制备的模板上。待硅胶固化后,将硅胶膜从模板上脱模,硅胶膜上便得到了一些三维微结构,包括微板阵列和微柱阵列等。当施加磁场后,微结构内部的磁性颗粒受到磁场的吸引或排斥作用,使得微板阵列和微柱阵列发生倾斜,从而改变了微结构的表面形貌。通过调节所制备微结构在竖立与倾斜状态之间的转换,可以实现超疏水与超亲水以及低黏滞性与高黏滞性之间的可逆转换。

6.3 所处环境可逆调谐

水下油滴或气泡的浸润性,不但会受到表面微纳结构和化学组成的影响,还会受到液体环境的影响。因而,可以通过改变周围液体环境来实现浸润性的智能调节。

Yong等75提出了一种通过改变水下油滴周围液体环境来调节油滴所受浮力大小,进而在飞秒激光制备的水下超疏油表面上实现油滴智能操控的方法,如图48(a)所示。如图48(b)所示,首先用飞秒激光制备的水下超疏油表面接触水槽中另一个超疏油表面上放置的油滴,然后向液体环境中缓慢加入蔗糖溶液,最终使液体环境的密度大于油滴的密度。此时,油滴所受浮力大于其重力。当提升顶部的超疏油表面时,由于浮力的作用,油滴会随着超疏油表面一起上升,实现将油滴抓起的功能。通过移动超疏油表面,可以将油滴移动到目标位置。油滴也可以被可逆地放回底部表面上。降低上表面的高度,使油滴刚刚接触下表面,然后向液体环境中注入水,缓慢稀释水溶液。当水溶液密度低于油滴的密度时,油滴所受到的浮力小于其重力。此时,当升高上表面时,由于重力的作用,油滴会脱离顶部的超疏油表面,停留在指定位置。通过调节水溶液的密度可以重复多次将油滴抓起或释放,如图48(c)、(d)所示。这种智能操控油滴的方法可以将油滴或有机液体无损地从所处位置搬运到目标位置,有望应用于对细胞或组织进行细微操作。

图 48. 基于水环境密度调节在飞秒激光制备的水下超疏油表面上实现油滴拿起和释放的可逆操作75。(a)装置示意图;(b)增大水溶液密度将油滴拿起以及稀释水溶液将油滴释放的过程;(c)调节溶液密度实现油滴拿起和释放的原理;(d)可重复性

Fig. 48. Reversible manipulation of an underwater oil droplet picking up and releasing between the femtosecond laser-prepared underwater superoleophobic surfaces based on regulating water density[75]. (a) Schematic diagram of the installation; (b) the process of picking oil droplet up by increasing the density of the aqueous solution and releasing droplet by diluting the aqueous solution; (c) principle of picking up and releasing droplet by adjusting solution density; (d) repeatability

下载图片 查看所有图片

Jiao等175通过向水溶液中添加乙醇并动态调控水溶液中乙醇的体积分数实现了飞秒激光加工表面的原位可调气泡浸润性。首先通过飞秒激光烧蚀在钛表面形成超疏水微纳结构。最初的表面在水溶液中呈超亲气性,测得气泡的接触角为6°。然后逐渐向水溶液中添加乙醇,测得气泡的接触角逐渐变大,甚至可以增大到157°,说明该表面转变到了水下超疏气状态。这种转变过程是由于乙醇分子占据了内部微纳米结构,导致粗糙表面上的被俘气体层不断被压缩并向中心收拢。类似地,Yong等136提出了基于乙醇预润湿-干燥恢复的方法,在飞秒激光诱导的超疏水表面上实现了水下超亲气与超疏气之间的可逆转换。采用飞秒激光处理在铝、不锈钢、铜、镍、硅、PDMS、PTFE等材料表面上构建超疏水微结构,如图49(a)~(c)所示。若将这些超疏水表面直接浸入水下,则表面显示超亲气性,如图49(d)所示。如果将这些超疏水表面提前用乙醇润湿,然后再浸入水中(如图49(e)所示),则这些表面显示超疏气性(如图49(f)所示)。这是由于乙醇填充在微纳结构之间,当浸入水中后,乙醇与水相溶。水会替代乙醇的位置并填充在微纳结构之间,在粗糙结构间形成被俘水层,该水层可对气泡起到排斥作用。原始的超亲气性可以通过干燥处理来恢复。将表面从水溶液中取出,通过干燥处理使表面上的水分挥发干净,此时表面会重新获得超疏水性(如图49(g)所示)以及水下超亲气性(如图49(d)所示)。这种基于乙醇预润湿-干燥恢复的方法实现水下超亲气性与超疏气性可逆转换的过程可以重复进行多次。

图 49. 基于乙醇预润湿-干燥恢复的方法在飞秒激光制备的超疏水表面上实现水下超亲气性与超疏气性之间的可逆转换136。(a)飞秒激光在铝表面上制备的微纳结构;(b)(c)氟硅烷修饰后,结构化铝表面的超疏水性;(d)~(g)水下超亲气性与超疏气性可逆转换的实现过程

Fig. 49. Reversible switch between underwater superaerophilicity and superaerophobicity on the femtosecond laser-prepared superhydrophobic surface based on the method of alcohol pre-wetting and drying recovery[136]. (a) Micro/nanostructures prepared by femtosecond laser on aluminum surface; (b)(c) superhydrophobicity of the structured aluminum surface after fluorosilane modification; (d)-(g) the process of realizing reversible transition between underwater superaerophilicity and superaerophobicity

下载图片 查看所有图片

Huo等176提出了一种通过对水下超疏水表面抽气去除被俘空气膜从而实现水下超亲气到超疏气变换的策略。采用飞秒激光烧蚀在PTFE表面上制备超疏水微纳结构。当将表面浸入水下后,在微纳结构与水环境之间会俘获一层空气膜。当气泡接触所制备表面后会沿该空气膜铺散开,因而表面具有水下超亲气性。如果对整个系统进行抽真空处理,附着在超疏水表面上的气体就会被排出水环境之外,使得水完全进入表面微纳结构间。此时气泡在所制备表面上会被填充在微结构间的水排斥,使表面显示水下超疏气性。因而,通过简单的水下抽气处理可使飞秒激光制备的超疏水表面从水下超亲气性转变到超疏气性。相反,将表面从水环境中拿出并晾干,该表面可再次恢复空气中的超疏水性以及最初的水下超亲气性。

7 各种应用

由于所具有的特殊浸润性质,超浸润性表面近年来备受国际学术界和工业界的广泛关注。基于飞秒激光制备的不同极端浸润性的表面材料,可以实现一系列与液体相关的应用。

7.1 防水/防油/防气

排斥液体是超疏液表面最基本的属性35177。超疏水材料不会被水润湿,水滴在超疏水表面上很容易滚落。在下雨天,雨滴滴落在超疏水表面上会迅速反弹起。在潮湿的环境中,超疏水材料也能保持干燥。同样,超疏油表面不会被油或有机液体润湿甚至污染,水下气泡无法黏附在超疏气表面上。这些防水/防油/防气性使得一些器件的基本功能不会受到外部环境因素的干扰。例如,玻璃光学器件是一种精密器件,但其透光性会受到雨滴、雾滴等黏附的影响。Li等178利用飞秒激光在玻璃微透镜阵列结构周围制备了超疏水微结构,赋予微透镜器件整体超疏水的特性。即便是在雨露或潮湿环境中,该器件表面也能够保持干燥,从而保持出色的成像能力。相反,普通微透镜表面会黏附微小的水珠,从而失去原本的光学成像功能。总之,超疏水、超疏油或超疏气结构可以使材料免受水、油或气泡的润湿和干扰。

7.2 自清洁

与荷叶一样,飞秒激光制备的超疏水表面也具有自清洁功能,如图50(a)所示91。液滴能够在超疏水表面上保持小球状,并且很容易滚落下去。如图50(b)、(d)所示,当表面上有污染物(如固体灰尘颗粒)时,因为水滴对大多数灰尘的亲和力要比固体表面对灰尘的吸附力强,所以滚动的液滴能够拾起路径上的污染物。随着污染物被液滴黏附走,液滴滚动的路径变得干净,如图50(c)、(e)所示。而对于普通表面,液滴很难在表面上运动。即便是倾斜材料表面,也只能使液滴以滑动的方式移动。液滴滑过后,污染物依然留在材料表面上。借助雨滴或大量的水滴,可以完全去除超疏水表面上的污染物,达到自清洁的目的。自清洁功能使得飞秒激光制备的超疏水表面可以应用于室外建筑物、汽车外壳、手机屏幕、太阳能电池板(雨水可冲刷掉这些建筑或器件上的污染物)等,减少其清洁次数。

图 50. 飞秒激光制备的超疏水表面和水下超疏油表面的自清洁功能。(a)超疏水表面自清洁原理91;(b)(c)滚落液滴清洁超疏水硅表面上的污染物101;(d)(e)滚落液滴清洁超疏水聚合物表面上的污染物91;(f)去除水下超疏油表面上油污的方法和过程179

Fig. 50. Self-cleaning function of superhydrophobic surfaces and underwater superoleophobic surfaces prepared by femtosecond laser. (a) Self-cleaning schematic of superhydrophobic surfaces[91]; (b)(c) rolling droplets cleaning contaminants on the superhydrophobic silicon surface[101]; (d)(e) rolling droplets cleaning contaminants on the superhydrophobic polymer surface[91]; (f) the method and process for removing oil contaminants from underwater superoleophobic surfaces[179]

下载图片 查看所有图片

水下超疏油微纳结构可赋予材料自发清洁有机污染物的功能。这种结构同时具备超亲水性和水环境中排斥油的性质。当被油污染的表面浸入水中时,表面结构中的油分子会被水分子取代,使得器件表面被水润湿,同时油污染物逐渐脱离超疏油表面。例如,Li等179基于飞秒激光湿法刻蚀技术在玻璃表面上制备了微透镜阵列,并进一步通过飞秒激光直写在透镜表面上制备了水下超疏油纳米颗粒结构。当被油污染的微透镜阵列浸入水中时,油污染物逐渐脱离微透镜阵列表面,实现了表面的自清洁,如图50(f)所示。所有油污最终都被清洗干净,没有任何残留物,恢复了该器件的基本光学功能。水下超疏油微透镜阵列能够保持清晰的成像能力,而被油污染的普通透镜则会丧失基本成像功能。

7.3 液滴操控

液滴操控是液滴相关应用的核心技术之一。借助于浸润性设计,人们提出了多种实现液滴操控的策略。例如,飞秒激光制备的高黏滞性超疏水表面可以被用作“机械手”,将低黏滞性超疏水表面上的液滴黏附起来(拿起),将液滴转移并释放到更高黏滞性的表面上,如图51(a)所示90。由于液滴与机械手上微结构的接触面积很小,因而在整个液滴转移过程中几乎没有液体损失,实现了液滴的无损输运。液滴无损输运技术在液体操作、微化学反应、生物工程等领域有着广阔的应用前景。下落的液滴可以在极低黏滞性超疏水表面上弹跳多次。随着表面黏滞性逐渐增大,水滴能够弹跳的次数越来越少。在高黏滞性超疏水表面上,液滴撞击表面后会紧紧黏附在表面上,无法反弹起。因此,通过控制超疏水表面的黏滞性,可以控制液滴的反弹行为90。可控液滴弹跳性可应用于喷墨打印技术。在超疏水表面上设计特定的高黏滞区域后,在表面上滚动的液滴就会被钉扎在这些特殊的位点,从而实现液滴的快速俘获和定位,如图51(b)所示90。利用飞秒激光刻蚀的超疏水凹槽轨道,可以使液滴只沿轨道运动。这些操控液滴方式也适用于操纵水下油滴和气泡。

图 51. 基于飞秒激光制备的特殊浸润性表面实现的多功能液滴操控。(a)液滴的无损输运90;(b)液滴快速俘获和定位90;(c)液滴定向输送107;(d)定向自清洁107;(e)液滴图案摆放76;(f)基于液滴的微化学反应器76;(g)气体传感76;(h)远程激光操控液滴释放180

Fig. 51. Multifunctional droplet manipulation based on special wetting surfaces prepared by a femtosecond laser. (a) Lossless droplet transport[90]; (b) rapid droplet capture and localization[90]; (c) droplet directional transport[107]; (d) directional self-cleaning[107]; (e) droplet patterning[76]; (f) droplet-based microchemical reactors[76]; (g) gas sensing[76]; (h) remotely laser-controlled droplet release[180]

下载图片 查看所有图片

利用智能响应超浸润表面也能实现液滴的智能操作。例如,Jiang等172-173结合飞秒激光刻蚀和模板复制法制备了一系列内部掺杂磁性颗粒的PDMS微板阵列结构。微板阵列受到外部磁场影响后可在竖直状态和倾斜状态之间可逆变化,使表面对液滴的黏滞性发生改变。在高黏滞状态下,表面可将液滴黏附住;通过改变磁场将表面转变成低黏滞状态,液滴能够被原位释放。类似地,Shao等174制备了磁响应的超滑微板阵列结构。除了水滴,该表面还可以通过磁场控制油滴、气泡和昆虫的移动。Bai等76107利用飞秒激光在形状记忆聚合物表面上制备了微柱和微沟槽阵列结构,所制备的表面具有超疏水性和各向异性浸润性,并且浸润性会随着微结构形貌的改变而改变。通过结合可变的黏滞性和各向异性浸润性,所制备的形状记忆微结构可以作为一种液体操作的多功能平台,实现液体定向输送(如图51(c)所示)、定向自清洁(如图51(d)所示)、液滴图案摆放(如图51(e)所示)、基于液滴的微化学反应器(如图51(f)所示)和气体传感(如图51(g)所示)等。特别地,在激光制备的形状记忆聚合物结构内添加光热材料,可以远程(超过2 m)利用普通激光照射使表面微结构从倾斜状态转变为竖直状态180,从而将黏附在表面上的液滴释放下来(如图51(h)所示)。

7.4 液体图案化

飞秒激光在设计、制备图案化微结构方面具有突出优势。通过飞秒激光设计由不同浸润性区域组成的图案结构,借助浸润性差异可将液体局限在特定的亲液区域。以水为例,超疏水微纳结构具有强烈的排斥水的能力,可将水驱赶到其他结构区域。飞秒激光可以在样品表面选择性制备超疏水区域和超亲水区域。当将水倾倒在所制备图案化结构上时,由于超疏水区域对水的排斥作用,水被局限在超亲水区域,很难蔓延到超疏水区域。因而,水只润湿超亲水区域并可在超亲水区域形成液体图案,其形状与所设计的超亲水区域一致。基于超疏水微结构对水的限制作用,可以制备各种复杂的液体图案。当然,也可以在材料表面只加工出超疏水微纳结构区域,将水驱赶到未处理的平滑区域,从而形成液体图案。液体图案化能够在打印技术、表面微流控等技术中发挥重要作用。

除了可在空气中实现液体图案化外,也可以借助水下油滴浸润性和气泡浸润性实现水下油的图案化和气泡的图案化。Yong等181提出了一种基于液体图案化方法制备液体透镜阵列的策略,如图52(a)所示。首先,采用飞秒激光选择性烧蚀,在玻璃基底上制备圆形阵列图案结构(如图52(b)所示)。中间直径为2 mm的平滑圆形区域未被激光处理,在水下保持普通疏油性且对油滴具有高黏滞性,而周围区域被飞秒激光烧蚀后形成了排斥油滴的水下超疏油纳米结构,如图52(c)~(d)所示。当将图案化表面浸入水中并将油滴释放在圆形区域时,油滴就会被周围超疏油结构限制在平滑的圆形区域内,如图52(a)所示。油滴的底座与所设计圆区域一致,而高度则随着滴入油滴体积的增大而增大。在每个圆形区域放入同等体积的油滴,便可获得油滴阵列(如图52(f)所示)。表面张力使油滴的表面弯曲并呈现凸透镜形状,因而油滴阵列与周围的水环境可以构成一种透镜阵列系统。所制备液体透镜阵列具有出色的成像能力,如图52(g)所示。

图 52. 基于液体图案化方法制备的液体透镜阵列181。(a)实现液体透镜的思路;(b)飞秒激光在玻璃表面制备的圆阵列图案;(c)~(e)飞秒激光诱导的微纳结构;(f)所形成的液滴阵列;(g)液滴透镜阵列的成像能力

Fig. 52. Liquid lens array prepared based on liquid patterning method[181]. (a) The idea of realizing liquid lenses; (b) circular array pattern prepared by femtosecond laser on glass surface; (c)-(e) femtosecond laser-induced micro/nanostructures; (f) formed droplet array; (g) imaging capability of droplet lens array

下载图片 查看所有图片

7.5 浮力增强

图53(a)所示,自然界和生活中有许多超浮力现象,例如:荷叶可以稳稳地浮在水面上,即使青蛙蹲坐在上面荷叶也不会下沉;水黾能够在水面上行走和跳跃;被蜡涂覆的金属硬币和针也能浮在水面上。荷叶和水黾具有超疏水表面结构,涂蜡的材料具有疏水性。Yong等56借助飞秒激光制备的超疏水微纳结构(如图53(b)所示)研究了浸润性对薄片材料在水面上漂浮及负载能力的影响,结果显示,超疏水性能够起到浮力增强的作用。Zhan等57制备了一种类似荷叶的超疏水超浮力薄片小船,如图53(c)所示。通过飞秒激光加工了5种不同浸润性的PDMS圆片小船:(Ⅰ)上下表面均亲水,(Ⅱ)上表面亲水+下表面超疏水,(Ⅲ)上表面超疏水+下表面亲水,(Ⅳ)上表面亲水+下表面边缘超疏水,(Ⅴ)上表面边缘处超疏水+下表面亲水。对比小船的负载能力后发现:小船Ⅰ和小船Ⅱ的负载能力相等,说明下表面的浸润性对该薄片小船的负载能力没有影响;小船Ⅲ的负载能力明显高于小船Ⅰ和小船Ⅱ,说明上表面的超疏水性可以增强该小船的负载能力;小船Ⅳ的负载能力与小船Ⅰ、小船Ⅱ相等,进一步验证了下表面的浸润性对圆片负载能力的影响不大;小船Ⅴ拥有与小船Ⅲ同样大小的负载能力,说明上表面边缘处的超疏水性是显著提高薄片小船浮力的关键(这种效应被称为“超疏水边缘效应”)。水无法润湿薄片上表面边缘处的超疏水微结构,超疏水结构和表面张力可以使水面发生弯曲,即使薄片的顶部已经低于水面(如图53(d)所示),而弯曲的液面可以增加小船的排水量,从而增大了作用在薄片上的浮力(如图53(e)所示)。所受浮力的增强使得超疏水小船可以拥有更大的负载能力,也能够在水面上更稳定地漂浮。Zhan等57利用飞秒激光制备的超疏水金属铝片设计了一种夹心层结构(铝-空气-铝)。即使是从水底释放,该结构也能迅速浮到水面上,实现了令金属稳定漂浮在水面上的特殊功能,如图53(f)所示。相反,对于普通的金属片,由于其密度比水大,会沉到水底。借助于超疏油微纳结构,也可以使一些材料浮在油面上。例如,Zhou等182利用飞秒激光在金属薄片两侧制备了水下超疏油微纳结构。将金属片浸入由水相和油相共同组成的复合液体(上水下油)中,结果发现,金属片从水面开始下沉,但最终停留在水/油界面处,即浮在了油的表面上,如图53(g)所示。即使是液体环境发生剧烈的晃动,超疏油金属片仍能稳定地漂浮在油面上,保持位置不变。超疏水结构的浮力增强功能可以使微小器件稳定地浮于水面,在水文监测、水污染监测、水栖机器人等方面具有重要的潜在应用。

图 53. 飞秒激光制备的超浸润材料的浮力增强效果。(a)自然界和生活中的超浮力现象56;(b)飞秒激光制备的超疏水小船的上表面微结构56;(c)超疏水薄片小船的大荷载能力57;(d)超疏水小船与水面的接触57;(e)浮力增强的原因57;(f)超疏水夹心层(铝-空气-铝)结构使金属铝片浮到水面上57;(g)水下超疏油金属片稳定地漂浮在油面上(在水下)182

Fig. 53. Buoyancy enhancement effect of superwetting materials prepared by femtosecond laser. (a) Enhanced buoyancy in nature and life[56]; (b) upper surface microstructure of a femtosecond laser-prepared superhydrophobic boat[56]; (c) large load capacity of a superhydrophobic wafer boat[57]; (d) contact between the superhydrophobic boat and the water surface[57]; (e) reason for enhanced buoyancy[57]; (f) the superhydrophobic sandwich (aluminum-air-aluminum) structure allowing the metal aluminum sheet to float to the water surface[57]; (g) underwater superoleophobic metal sheet floating stably on the oil surface (underwater)[182]

下载图片 查看所有图片

7.6 微小液滴/气泡的释放

微小液滴和气泡(小到微升或纳升尺度)的产生和操纵有着广阔的应用领域,如喷墨打印、高分辨率三维打印、细胞工程、生物分析、化学工程和环境修复等。释放液滴的尺寸主要受到两个因素的影响:喷嘴的尺寸和液滴的黏附。目前,科学界和工业界主要通过减小喷嘴尺寸或借助于特殊驱动机构(如机械、电气和热驱动设备)来产生更小的液滴。然而,当针头的喷嘴尺寸减小到制造能力的极限时,则很难进一步减小所释放液滴的体积。另外,对于许多生物医学和化学应用来说,普通针头上的液体黏附和残留是一个严重的问题,液体残留不但会降低操作液体的体积精度,而且增加了交叉污染的风险。在喷嘴或针头表面设计极端浸润性微纳结构,可以有效减小液滴或气泡的黏附。例如,Yong等134在普通注射器针头表面(如图54(a)所示)上通过飞秒激光制备了超疏水微纳结构(如图54(b)所示),使针头所能滴落的水滴的体积明显小于普通针头。也就是说,飞秒激光设计的超疏水微结构可以减小针头所能释放液滴的体积,从而能够释放更小的液滴(如图54(c)所示)。同样,水下超疏油微纳结构可以使针头在水环境中释放更小的油滴或有机液滴(如图54(d)所示),水下超疏气微纳结构可以使针头释放更小的气泡(如图54(e)所示)。无须缩减喷嘴的直径,甚至可以从水下超疏气喷嘴中分离出体积小至177 nL的气泡。之所以能够释放更小的液滴或气泡,主要是由于飞秒激光制备的超疏水、超疏油和超疏气微纳结构可以抑制液滴或气泡在喷嘴/针头处的黏附。此外,超疏水性和水下超疏油性也可以有效避免针孔处的液体残留。当液滴滴落后,几乎没有液体残留在针头表面。飞秒激光制备的极端浸润性微纳结构可以有效减小释放液滴或气泡的尺寸并且减少液体残留,显著提高了水溶液以及气体操作、输送过程中的体积精度。

图 54. 飞秒激光制备的超浸润针头用于释放微小液滴或气泡134。(a)激光处理前的针头结构;(b)激光在针头端面制备的微纳结构;(c)亲水、超亲水和超疏水针头释放液滴的对比;(d)水下疏油、超疏油和超亲油针头释放油滴的对比;(e)水下疏气、超疏气和超亲气针头释放气泡的对比

Fig. 54. Superwetting needles prepared by femtosecond laser for releasing tiny droplets or bubbles[134]. (a) Needle structure before laser treatment; (b) femtosecond laser-induced microstructure on the end face of the needle; (c) comparison of droplets released by hydrophilic, superhydrophilic, and superhydrophobic needles; (d) comparison of oil droplets released by underwater oleophobic, superoleophobic, and superoleophilic needles; (e) comparison of bubbles released by underwater aerophobic, superaerophobic, and superaerophilic needles

下载图片 查看所有图片

除了可以直接在喷嘴或针头端面制备超浸润微结构以外,飞秒激光也可以直接制备超浸润微孔结构。利用飞秒激光在薄膜表面定点烧蚀,直至将材料烧蚀穿透,可以制备通孔结构。微孔内壁修饰着激光诱导的微纳结构,薄膜表面也可以通过激光逐行扫描的方式制备超疏水、超疏油或超疏气微纳结构。飞秒激光制备的微孔结构的直径甚至可以小到纳米级别,远小于市场上喷嘴或针头的口径。以飞秒激光制备的超浸润微孔结构为核心,结合一些辅助设备,可以产生极小的液滴或气泡。例如,在水下批量产生微小气泡,用于改善湖泊和鱼池的水质。

7.7 油水分离

频繁发生的石油泄漏事故和工业含油废水排放不但造成了巨大的经济损失,还严重污染了生态环境。将油水混合液有效分离是解决上述问题的有效途径之一。基于飞秒激光制备的极端浸润性材料对水和油浸润性的差异,可以实现油水分离的功能183。基于超疏水-超亲油的多孔膜允许油穿过而将水拦截下来,如图55(c)所示。例如,Yong等92利用机械加工的方法在PTFE薄膜上形成穿孔结构,然后利用飞秒激光在薄膜表面上制备了超疏水的微纳米结构(如图55(a)所示)。超疏水微纳结构使得水滴无法穿过薄膜上的通孔结构。然而,所制备的微结构具有超亲油性,油滴能够润湿表面微纳结构,并穿过微米通孔。将油水混合液倾倒在所制备的多孔膜上,超亲油性允许混合液中的油渗透过多孔膜,而超疏水性将混合液中的水拦截下来,使得水相不能穿过该多孔膜。最终,可以将该油水混合液成功分离成多孔膜上方的水部分和多孔膜下方的油部分,实现油水分离(如图55(b)所示)。

图 55. 基于飞秒激光制备的超疏水或水下超疏油多孔膜实现油水分离。(a)超疏水多孔PTFE膜结构92;(b)基于超疏水多孔PTFE膜的油水分离92;(c)基于超疏水多孔膜实现油水分离的原理;(d)水下超疏油多孔铝膜184;(e)基于水下超疏油多孔铝膜的油水分离184;(f)基于水下超疏油多孔膜实现油水分离的原理

Fig. 55. Achievement of oil-water separation based on the superhydrophobic or underwater superoleophobic porous membranes prepared by femtosecond laser. (a) The structure of superhydrophobic porous PTFE membrane[92]; (b) oil-water separation by using superhydrophobic porous PTFE membrane[92]; (c) oil-water separation principle based on superhydrophobic porous membrane; (d) underwater superoleophobic porous aluminum membrane[184]; (e) oil-water separation by using underwater superoleophobic porous aluminum membrane[184]; (f) oil-water separation principle based on underwater superoleophobic porous membrane

下载图片 查看所有图片

不同于超疏水-超亲油多孔膜,水下超疏油材料在水下具有抗油特性,同时也具有超亲水性。也就是说,水下超疏油材料兼具亲水疏油性,因而水下超疏油多孔膜也可以用来实现油水分离。这种膜允许水穿过去而将油拦截住184,如图55(f)所示。Li等184利用飞秒激光在铝箔上制备了一系列直径低至2.4 μm的穿孔阵列,如图55(d)所示,微孔内部和边缘都覆盖着激光诱导的水下超疏油微纳结构。当将油水混合液倾倒在预先用水润湿的多孔铝箔上时,超亲水性允许水相穿过所形成的通孔后滴落下去,而超疏油性使得油被拦截下来,只能停留在多孔膜之上。因而,油水混合液被成功分离,如图55(e)所示。同样,Yin等185利用飞秒激光直接在不锈钢网表面上制备了超亲水且水下超疏油的纳米结构。借助于金属网本身具有的穿孔结构和激光诱导结构的特殊浸润性,该结构同样实现了油水分离功能。预润湿的金属网只允许水渗透过,而不允许油通过。

基于超疏水多孔膜和水下超疏油多孔膜实现油水分离的方法是基于过滤的方式。当然油水分离也可以通过吸附的方式实现,这是第三种策略。通过飞秒激光烧蚀在海绵等多孔体状材料表面制备微纳结构,可以赋予这些多孔体材料超疏水和超亲油特性。当这些材料接触油水混合液时,超疏水性使得水不会被吸附进来,而超亲油性使得油会被体材料吸附,从而可以将油去除,实现油水分离。这种吸附策略通常针对混合液中油相对于水来说比较少的情形,例如少量漏油浮在水面上。

水下超疏聚合物结构对液体聚合物的排斥作用使得分离聚合物和水的混合液成为了可能。Yong等186利用飞秒激光在不锈钢网表面上制备了周期性纳米条纹结构(如图56(a)、(b)所示),该纳米结构具有超亲水性(如图56(c)所示)和水下超疏聚合物性(如图56(d)所示)。类似于油水分离的过程,当将聚合物与水的混合液倾倒在预润湿的多孔网上时,水相能够顺利渗透过金属网,而聚合物液体则被拦截在金属网之上,从而实现了聚合物与水的分离(如图56(e)所示)。也可以将所制备的水下超疏聚合物金属网作为打捞网,直接从水面打捞漂浮的聚合物污染物(如图56(f)所示)。水会漏过金属网,而聚合物则会被打捞起来。水-聚合物分离技术有望解决化工生产中所面临的聚合物泄露和污染问题。

图 56. 基于飞秒激光制备的水下超疏聚合物金属网分离水和液体聚合物186。(a)(b)飞秒激光在不锈钢网表面制备的纳米结构;(c)结构化金属网的超亲水性;(d)结构化金属网的水下超疏聚合物性;(e)基于过滤的方式实现水-聚合物分离;(f)基于打捞的方式去除浮在水面上的液体聚合物

Fig. 56. Separation of water and liquid polymers by using femtosecond laser-structuerd underwater superpolymphobic metal mesh[186]. (a)(b) Laser-induced nanostructure on the surface of stainless steel mesh; (c) superhydrophilicity of structured metal mesh; (d) underwater superpolymphobicity of the structured metal mesh; (e) water-polymer separation based on filtration manner; (f) removal of liquid polymers floating on the surface of the water based on fishing process

下载图片 查看所有图片

7.8 水气分离

气泡常常存在于水中,有些时候气泡是有害的,例如:输液管内的气泡会给病人的健康带来威胁;微流控系统内的气泡所带来的流体阻力不容忽视,有时气泡甚至会阻塞管道。但在有些情况下,需要将这些能源气泡收集起来,例如海底自发逸出的甲烷气泡。不论从水中收集气泡还是去除气泡,都是从水中分离出气泡的过程,即水气分离过程177。水下超疏/亲气多孔膜对气泡的选择性拦截作用使得水气分离成为了可能87。Yong等187利用飞秒激光在PDMS多孔膜表面上制备了超疏水且水下超亲气的微纳结构(如图57(a)所示),并基于此膜设计了一种水下气泡收集装置(如图57(b)所示)。如图57(c)所示,该收集装置的主体为一个无盖的腔体,所制备的超疏水多孔膜作为收集膜覆盖在腔体底面,腔体上部连接输气管道。在水下,由于飞秒激光制备的微纳结构的超疏水性,水无法穿过PDMS膜上的通孔,即水不会进入收集装置。相反,气泡上浮并接触收集装置底面,水下超亲气性允许气泡穿过多孔膜并进入收集腔内。因此,水中的气泡可以被装置吸收,收集的气体可以通过输气管及时向外输送(如图57(d)所示)。类似地,Zhu等188在多孔泡沫铜薄板的一面修饰超疏水纳米结构,另一面用飞秒激光制备亲水且水下超疏气的微纳结构。水中的气泡可以从激光烧蚀面穿过到达另一面,但无法从反方向穿过该泡沫铜板。他们基于制备的Janus泡沫的气泡单向输运特性,实现了水下CO2气泡的收集。这类收集装置在水下可以收集各种各样的气泡,不论是何种类的气体。例如,可以收集海底或湖水中自发渗出的甲烷气泡,以缓解当前人类所面临的能源危机问题。

图 57. 基于飞秒激光制备的水下超亲气和超疏气结构实现水气分离。(a)飞秒激光在多孔PDMS膜表面制备的微纳结构187;(b)水下气泡收集装置示意图187;(c)基于水下超亲气多孔PDMS膜搭建的气泡收集装置187;(d)收集水中气泡的过程187;(e)飞秒激光在不锈钢网表面上制备的微结构189;(f)去除输水管中气泡的装置示意图及工作原理189;(g)去除水流中气泡的过程189

Fig. 57. Realization of water/gas separation based on the underwater superaerophilic and superaerophobic microstructures. (a) Femtosecond laser-prepared micro/nanostructures on the surface of porous PDMS films[187]; (b) schematic diagram of the underwater bubble collection device[187]; (c) a bubble collection device based on underwater superaerophilic porous PDMS films[187]; (d) the process of collecting air bubbles in water[187]; (e) microstructures prepared by femtosecond laser on the surface of stainless steel mesh[189]; (f) schematic diagram and working principle of the device for removing bubbles in the water pipelines[189]; (g) the process of removing air bubbles from the water flow[189]

下载图片 查看所有图片

结合超疏水-水下超亲气多孔膜和超亲水-水下超疏气多孔膜,Yong等189提出了一种去除输水管道中气泡的策略。他们采用飞秒激光在不锈钢网表面上制备了周期性纳米结构(如图57(e)所示),金属网便具有了超亲水性以及水下超疏气性。经低表面能修饰后,该金属网便具有了超疏水性和水下超亲气性。如图57(f)所示,在输水管内部垂直插入所制备的超亲水-水下超疏气金属网,同时在输水管侧壁上开凿一个小孔,该小孔位于金属网的前部,并在孔上覆盖超疏水-水下超亲气金属网。金属网的超亲水性允许水管中的水流正常通过,而水下超疏气性使得金属网对水流中的气泡具有排斥作用,因而气泡被金属网拦截下来。气泡停止前进后,依靠自身的浮力上浮,最后接触到管壁上的金属网。侧壁上金属网的超疏水性保证了管道内的水不会流出管道,而超亲气性使得气泡被吸附并且快速穿过金属网。随着水流中的气泡穿过该金属网并不断地被释放到外部大气环境中,实现了去除输水管中气泡的功能(如图57(g)所示)。这种方式也适用于微米级管道中气体的剔除,如微流控系统。

Yao等190利用飞秒激光在PTFE细管(直径约为1.2 mm)表面上制备了一系列直径约为54 μm的穿孔,并进一步在细管表面上制备了微纳粗糙结构,使细管具有了超疏水和水下超亲气性。当水下气泡接触该细管后,Laplace压强驱使气泡内的气体穿过激光烧蚀的微孔而进入细管,并沿细管被排放到大气环境中。如果将该细管插入输液管中,输液管中的气泡也能够被该细管吸收并排放出去,从而可以避免气泡输入体内对人体健康造成威胁。

不论是气泡收集方式还是去除方式,都能够有效地实现水气分离187189。水气分离技术在巧妙利用水下气泡以及排除气泡引起的危害等方面具有重要应用。

7.9 防结冰

低温下的结冰有着众多危害,例如飞机机翼上结冰容易引发安全事故,雷达天线上结冰会降低监测的准确性,高压输电线结冰不但会降低传输效率还会增加电线的负重。有效抑制结冰或除冰依然是当前工程应用中的一个热点研究课题。防结冰需要从三个阶段入手:1)结冰前——防止水雾在表面上冷凝;2)结冰中——延缓水结冰的过程;3)结冰后——降低冰与表面的黏附强度。Pan等191利用飞秒激光在铜片上制备了周期性的微锥阵列结构,然后经化学反应处理在微锥表面上生长了纳米草结构和微花瓣结构。所制备的超疏水三级尺度微结构同时具有防冰和疏冰能力。一方面,液滴撞击该超疏水表面时,很容易被反弹起(甚至可以反弹20次以上),使得液滴与固体表面的接触时间很短(小于9 ms)。超疏水微结构抑制了液体与固体表面的完全接触。另一方面,多级微纳结构导致了分级凝结现象。在靠近微锥顶部区域,凝结的液滴快速经历成核、生长、合并以及合并引起的弹跳过程(如图58(a)所示)。即便在高湿度环境中,在微锥结构间凝聚的次级液滴也会自发地向上迁移到微结构顶部(如图58(b)所示),并被上面凝聚的初级大液滴吸附(如图58(c)所示)。超疏水表面上微结构之间的空隙被空气而不是凝聚的液滴填充,该截留空气层相当于隔热层,可以显著降低固体表面与液体之间的热传递,所以超疏水微纳结构间的气穴延缓了固/液界面处非均相成核过程的发生。即使经过长时间冷冻后,表面上结了冰,冰层与超疏水微结构之间的黏附强度也非常低,仅为1.7 kPa,冰层仅仅依靠自身的重力即可滑离固体表面。这种超疏水表面所具有的防冰性能和疏冰性能主要归功于撞击液滴的快速滚落、通过分层冷凝产生的优异抗湿性以及在冻结条件下固/液界面处非均相成核的显著延迟。

图 58. 基于飞秒激光制备的超疏水和超滑结构实现的防冰和疏冰功能。(a)超疏水微锥顶部液滴的凝结过程191;(b)微锥结构间次级液滴的向上迁移191;(c)次级液滴与初级大液滴合并及液滴弹跳191;(d)未处理表面、超疏水表面以及超滑不锈钢表面上水滴结冰过程的对比192;(e)未处理表面、超疏水表面以及超滑不锈钢表面上冰黏附强度的对比192;(f)超滑表面上冰形成及去冰示意图192

Fig. 58. Anti-icing and icephobic functions of the superhydrophobic and the slippery surfaces prepared by femtosecond laser. (a) Condensation process of tiny droplets at the top of superhydrophobic microcones[191]; (b) upward migration of secondary droplets between conical microstructures[191]; (c) merge of secondary droplet and primary large droplet as well as droplet jumping[191]; (d) comparison of water droplets freezing on the untreated, superhydrophobic, and slippery stainless steel surfaces[192]; (e) ice adhesion strength comparison on the untreated, superhydrophobic, and slippery stainless steel surfaces[192]; (f) schematic diagram of ice formation and de-icing on a slippery surface[192]

下载图片 查看所有图片

Zhang等192利用飞秒激光在不锈钢、铝、锌、钛、铜等金属表面诱导出了多孔结构并制备了超滑表面。通过研究超滑表面的结冰过程和冰黏附强度发现,超滑表面具有延迟结冰和降低冰黏附强度的双重功能。在-30 ℃的低温下,与普通的金属表面、超疏水金属表面相比,不锈钢超滑表面上的结冰时间分别延长了43.3%和21.5%(如图58(d)所示),超滑表面显示出优异的抗结冰能力。此外,在超滑表面上冻结的冰层与超滑基底间的黏附强度也非常低,冰层很容易从表面上脱离并滑落。即便是重复多次结冰-脱冰过程后,冰黏附强度依然低于15 kPa(如图58(e)所示)。超滑表面可以延缓结冰的发生,也能减小冰层与固体基底的黏附强度,从而赋予金属表面抗结冰、易脱冰的性能(如图58(f)所示)。

7.10 防腐蚀

金属材料长期暴露在空气中非常容易因腐蚀而受到损伤,进而影响金属器件的正常运行。金属腐蚀不但会造成巨大的经济损失,还会威胁生态环境。基于极端浸润性设计,使金属材料与液体环境隔离,是一种抑制金属腐蚀的有效途径。Zhao等193利用飞秒激光在金属铝表面制备了多级微纳米结构,然后对微纳结构进行低表面能修饰和灌注润滑液,分别在铝基底上制备了超疏水表面(SHS)和超滑表面(SLIPS)两类抗液性界面(如图59(a)、(b)所示)。通过电化学测试分析了不同铝表面的腐蚀速率(如图59(c)、(d)所示),测得未处理金属表面上的腐蚀电流密度为1.084×10-6 A/cm2,而超疏水表面上的腐蚀电流密度仅为1.06×10-7 A/cm2,相比前者降低了约1个数量级。这说明飞秒激光制备的超疏水表面可以显著减缓金属铝的腐蚀速度,提高了金属铝的耐蚀性。这是由于超疏水微纳结构对腐蚀液具有排斥作用,腐蚀液只能够接触微纳结构顶部的极小面积。特别地,超滑表面甚至可以将腐蚀电流密度降低3个数量级,达到1.44×10-9 A/cm2。超滑表面表现出了更优异的耐蚀性,这是由于超滑表面上的润滑液层彻底阻断了金属基底与腐蚀性溶液的直接接触。实验结果表明,飞秒激光制备的超疏水表面和超滑表面均可以大幅提升金属材料的耐蚀性。Trdan等194同样基于飞秒激光处理实现了航空铝材AA2024-T3耐蚀性的强化。飞秒激光处理后,铝材表面处于超亲水状态,但在空气环境中放置一个月左右,表面就会呈现出超疏水性(接触角为160°±4°)。通过分析金属表面的纳米压痕、残余应力以及铝材在氯化物环境中的润湿性和电化学行为发现,飞秒激光处理可以提高铝材的极化电阻、降低其腐蚀电流,因此铝材在腐蚀性氯化物溶液中也能够长期稳定放置。

图 59. 飞秒激光结构化金属表面的耐蚀性。(a)飞秒激光在铝基底上制备超疏水和超滑表面的流程193;(b)所制备的超疏水和超滑表面的浸润性193;(c)在模拟海水中腐蚀24 h后的表面结构193;(d)不同表面的耐蚀性对比193;(e)~(i)超滑NiTi合金的耐蚀性195

Fig. 59. Corrosion resistance of femtosecond laser-structured metal surfaces. (a) Preparation process of superhydrophobic and slippery surfaces on aluminum substrate by femtosecond laser[193]; (b) wettability of the prepared superhydrophobic and slippery surfaces[193]; (c) surface microstructures after corrosion in simulated seawater for 24 h[193]; (d) comparison of corrosion resistance of different surfaces[193]; (e)-(i) corrosion resistance of slippery NiTi alloy[195]

下载图片 查看所有图片

在医学领域,植入材料,如NiTi合金,不可避免地会接触到体液,体液中大量的Na+会引起植入金属腐蚀。Cheng等195基于飞秒激光诱导的多孔微结构在NiTi合金表面制备了超滑结构(SLACS),并采用电化学阻抗谱法(EIS)评价了NiTi合金在模拟体液环境中的耐蚀性。超滑合金的Bode模量远高于原始NiTi合金,说明超滑合金的耐蚀性较未处理NiTi合金表面更高(如图59(e)所示)。这是由于超滑结构层(由固态PDMS层和液态硅油组成)阻碍了流体与多孔基底的直接接触,从而提高了合金的耐蚀性。Bode相位曲线显示,在高频处,超滑表面的相位高于未处理表面(如图59(f)所示),说明腐蚀离子很难渗透进超滑表面中。图59(g)和图59(h)分别描绘了未处理NiTi合金和超滑合金腐蚀过程中的等效电路,其中Rs为模拟体液的电阻,Rf为超滑层的电阻,Rct为NiTi合金的电阻,CPE1和CPE2代表双电层电容和薄膜电容的常相位单元。基于该模型模拟的电阻值如图59(i)所示。超滑层(主要由PDMS弹性体构成)的Rf高达4.95×107 Ω·cm2,远高于未处理NiTi合金(Rct=4.41×105 Ω·cm2),使得所制备的超滑NiTi合金表现出了优异的抗体液腐蚀性。

7.11 水下减阻

全球约90%的货物需要通过海洋运输,而海洋船舶在运行过程中有接近85%的燃料用于克服水的摩擦阻力。每年航运产生的二氧化碳排放约占全球的10%。此外,输水管道中的摩擦阻力也会降低液体的传输效率,同样造成了大量的能源浪费。到目前为止,美国已经拥有超过200多万公里的石油和天然气传输管道,每年克服管道中的传输阻力便消耗了大量的电能。自然界中有很多动植物具有减阻能力,例如,槐叶萍的叶表面具有超疏水性,在水下能够长时间附着一层气体层,该被俘气体层能够减小水流与叶表面间的摩擦阻力,起到了减阻作用,使得槐叶萍不会被水流冲倒。受自然界启发,研究人员在一些材料表面设计了特殊浸润性微纳结构,以有效实现水下减阻。

超疏水微纳结构在水下具有减阻功能,这是由于超疏水结构与水接触的界面处形成的空气层减小了液体与固体的黏附。在微流控管道中制备超疏水微纳结构,可以减小流体流动时所受到的阻力。Sarbada等196采用飞秒激光与模板复制相结合的方法,制备了一种内壁修饰超疏水微纳结构的简易微通道。在相同的压力驱动下,超疏水微流控通道内液体的流速可达2.23 mL/min,而同样尺寸的普通微流控系统中液体的流速仅为0.77 mL/min。超疏水微纳结构显著减小了微流控系统内流体的阻力,增大了流速。图60(a)~(c)揭示了超疏水管道减阻的原因。一般地,牛顿液体以层流的方式沿固体表面流过。对于以一种液体和一种气体为边界的情况,由于剪切应力的连续性,靠近固体表面处的液体受到固体表面的黏滞阻力,流速最小;而接触空气处的液体几乎不受到阻力,因而液/气界面处的流速最大(如图60(a)所示)。滑移边界条件指出,固体壁面处的滑移速度与流体在壁面处的剪切速率成正比。对于圆形固体管道中的流体,其在管壁处受到摩擦阻力作用,因而速度剖面呈抛物线形(如图60(b)所示)。最大流速位于管道中心处,越靠近管壁流速越慢。对于具有超疏水内壁的微管道,由于一层薄的空气层附着在超疏水微纳结构之间,流体与管道内壁的摩擦与流体/空气界面的情况非常相似(如图60(c)所示),所以,超疏水管道内流体的流速轮廓呈现塞子状,管壁处的流速几乎等同于管道中心处的流速,减阻性能达到最优。超疏水表面的这种减阻原理与气垫船有异曲同工之妙。超疏水表面上附着的空气薄层可以将接触面从水/固体界面变为水/空气界面,从而减小了流体阻力。

图 60. 基于飞秒激光制备的超疏水和超滑表面的减阻功能。(a)~(c)超疏水表面的减阻原理示意图;(d)超滑表面的减阻示意图197;(e)(f)超滑表面的减阻性能197

Fig. 60. Drag reduction function of superhydrophobic and slippery surfaces prepared by femtosecond laser. (a)-(c) Drag reduction principle of superhydrophobic surface; (d) drag reduction diagram of the slippery surface[197]; (e)(f) drag reduction performance of slippery surface[197]

下载图片 查看所有图片

Rong等197先在铝镁合金表面利用纳秒激光烧蚀出具有微纳米形貌的鱼鳞状结构,然后将润滑液灌注到结构中,得到了具有各向异性的超滑表面。所制备的超滑界面同样可以赋予金属表面优异的水下减阻功能(如图60(d)所示)。在水流中,测得超滑表面受到的摩擦阻力小于未处理表面(如图60(e)所示),沿两个相反方向上的最大减阻率分别达到了51.09%和44.88%(如图60(f)所示)。随着液体流速增加,超滑表面的减阻率能够一直保持在50%左右。如图60(d)所示,超滑表面的微纳结构间隙被润滑液填充。当液体流过超滑表面时,固体表面与最近的流体层之间存在一层薄薄的润滑膜,该层薄膜使液/固接触模式转变成了液/液接触模式。液体与液体之间的排斥性具有润滑作用,可以增加液体的流动性,从而减小液体所受到的黏滞阻力。润滑液层与最靠近的流体层之间的液/液摩擦力远低于未处理固体表面与液体之间的液/固摩擦力。液/液接触导致了界面滑动,因而超滑表面明显改善了金属表面的减阻效果。利用飞秒激光也可以制备类似的超滑表面,同样可以实现水下减阻功能。

7.12 水雾收集

从空气中收集水雾是一种获得饮用水的有效方式,尤其是在干旱的沙漠地区。借助于材料的特殊浸润性,可以有多种收集水雾的方式。Ren等198基于飞秒激光制备了一种Janus多孔膜,如图61(a)所示。他们先利用飞秒激光在铝箔上烧蚀出呈锥形的微孔阵列,如图61(b)所示。激光入射面的孔直径大于出射面的孔直径。经过低表面能氟硅烷修饰后,用激光对入射面进行扫描,以去除修饰物。所得到的多孔箔的大孔面具有超亲水性,而小孔面呈现超疏水性,因此该膜是一种两面具有相异浸润性的Janus膜。研究发现,当液滴接触该Janus膜的超疏水小孔面时,液滴就会自发地穿过该多孔膜到达超亲水的大孔面一侧。该过程由锥形微孔的浸润性梯度和Laplace压力驱动,相反的过程并不会发生。以该Janus多孔膜为核心制作的收集装置,可以从大气中收集水雾,如图61(c)所示。水雾能够自发地穿过多孔膜,并被有效转移到收集器内部。与普通的超亲水膜相比,采用飞秒激光制备的Janus多孔膜的集水效率提高了209%,如图61(d)所示。Yin等199先利用飞秒激光烧蚀在金属网上制备超疏水微纳结构,然后将该超疏水网贴合在亲水性金属板上,巧妙地获得了一种超疏水-亲水复合图案。在潮湿的环境中,亲水区吸收空气中的水雾,待附着水滴的直径超过网孔尺寸后,超疏水结构使收集的水滴及时从所制备表面上脱落并落入收集容器中。所制备的超疏水-亲水图案结构展现出了良好的水雾收集性能和较高的收集效率。Liu等200利用飞秒激光制备了一种超亲水-超疏水的叶脉状网络结构。他们首先在铝表面上制备了超疏水的微纳结构,然后在上面嵌入像树叶叶脉一样的超亲水脉络结构。超亲水脉络上的液滴受到Laplace力的驱动,会快速从线条窄的区域向宽的区域运动。附着在样品表面上的雾滴能够自发地沿着叶脉图案定向输运(如图61(e)所示),并最终汇集到指定位置,从而实现了水雾收集功能(如图61(f)所示)。该超亲水-超疏水叶脉微结构可以大面积地进行水雾收集。Zhang等201利用飞秒激光选择性烧蚀钛表面的特定区域,诱导出TiO2粗糙微纳结构。黑暗存储后,激光烧蚀区域显示超疏水性,而未处理区域则保持最初的亲水性。这种一步直接制备的超疏水-亲水复合图案表面也能够从潮湿环境中收集水雾,水雾收集速率可达到1400 mg·h/cm2,是未处理钛表面的两倍。

图 61. 飞秒激光制备的超浸润水雾收集装置。(a)飞秒激光制备的Janus多孔膜两面的结构198;(b)飞秒激光烧蚀的锥形孔结构198;(c)Janus多孔膜的水雾收集性能对比198;(d)水雾收集效率对比198;(e)水滴在飞秒激光设计的叶脉状结构上的自输运性能200;(f)基于超亲水-超疏水的叶脉状网络结构的水雾收集200

Fig. 61. Superwetting fog-collection device prepared by femtosecond laser. (a) Surface structure of the two sides of the Janus porous film prepared by femtosecond laser[198]; (b) femtosecond laser-drilled conical microholes[198]; (c) comparison of fog collection performance of Janus porous membranes[198]; (d) comparison of fog collection efficiency[198]; (e) self-transport of water droplet on the femtosecond laser-designed vein structure[200]; (f) fog collection based on superhydrophilic-superhydrophobic vein network structure[200]

下载图片 查看所有图片

7.13 微流控

微流控是一种利用几十到几百微米大小的通道来处理或操纵微量(纳升甚至阿升)液体的综合系统。小型化和集成化的特点使得微流控芯片能够实现一系列传统大型测试分析仪器无法完成的复杂微过程和微操作。微流控技术已经被广泛应用于化学和生物分析(如基因组学和蛋白质组学研究)、细胞操作和检测、医疗卫生、高通量药物筛选和集成光学等领域。

在微通道制备方面,Yong等147提出了一种基于飞秒激光制备的水下超疏聚合物微结构实现中空微米级通道制备的策略(如图29所示)。他们在玻璃表面上实现了水下超疏聚合物性微沟槽的飞秒激光直写。当将玻璃基底浸入水下,并将未固化PDMS溶液铺展在玻璃表面上时,超疏聚合物性使得液体PDMS不接触激光诱导的沟槽,而只接触未处理平滑区域。加热使PDMS固化,然后将样品移出水环境,并将残留的水蒸发后,固态PDMS膜便紧紧地贴附在玻璃表面上。可以发现,在激光诱导沟槽处形成了中空的通道,通道介于玻璃与PDMS之间。所制备的微通道结构可以用作微流控实现液体的传输。

Yong等70通过飞秒激光直写在PDMS材料表面上制备了几十微米宽的微槽,槽内壁覆盖着激光诱导的超疏水微纳结构。在液体环境中,超疏水微沟槽不会被水浸润,与水环境之间形成了一种中空的微通道,该通道允许气体自由流通。这种对微量气体进行传输和操控的器件被定义为“水下气流控”系统。气流控芯片致力于在微观尺度上操控微量气体,以建立基于气-气或气-液微相互作用的高度集成系统。当将激光直写的微沟槽连接不同大小的超疏水输入区域和目标区域时,水下气体会自发地从Laplace压强大的区域沿着超疏水沟槽传输到Laplace压强小的区域。整个微量气体传输过程不需要外力输入,可完全由Laplace压力自驱动完成。所制备气流控器件的微通道宽度只有42.1 μm左右,这样狭窄的微通道使得气流控系统能够实现微量气体的精密操控。灵活的自驱动气体传输性以及超长的传输距离(超过1 m)等特点赋予该水下气流控器件一系列气体操控功能,如气体融合、气体汇集、气体分裂、气体阵列化、基于气泡的气-气微反应、气-液微反应等,如图62(a)~(f)所示。通过巧妙的方式,也可以将气流控系统与传统的液体微流控系统集成,从而实现气体和液体的微量交互作用,如图62(g)、(h)所示。

图 62. 飞秒激光制备的水下气流控器件实现的各种气泡操控应用70。(a)气体融合;(b)气体汇集;(c)气体分裂;(d)气体阵列化;(e)基于气泡的气-气微反应;(f)气-液微反应;(g)(h)水下气流控系统与传统液体微流控系统的集成

Fig. 62. Various bubble manipulation applications enabled by femtosecond laser-prepared underwater aerofluidic systems[70]. (a) Gas merging; (b) gas aggregation; (c) gas splitting; (d) gas arrays; (e) gas-gas microreaction based on bubbles; (f) gas-liquid microreaction; (g)(h) integration of underwater aerofluidic devices with traditional liquid microfluidic system

下载图片 查看所有图片

7.14 柔性电路/电子器件

液态金属同时具有优异的导电性和延展性,是一种理想的柔性导电材料,在柔性电路制备方面具有广阔的应用前景。通过调控液态金属的浸润性,可以将液态金属印刷在柔性基底材料表面。以液态金属图案作为导电线路,可以实现各种柔性电路功能。Yong等152利用飞秒激光在柔性PDMS薄膜上制备了超疏液态金属微纳结构。通过掩模版阻挡激光加工特定区域,在微纳结构表面嵌入了未处理线条区域。当对图案化表面印刷液态金属时,超疏液态金属微结构排斥液态金属,使得液态金属只能印刷到设定的线条区域,如图63(a)所示。当将该液态金属线路连接成简单的电路后,电路能够导通,串联的灯泡被点亮。即使将该柔性表面弯曲,如贴合到手指表面,电路依然保持连通,如图63(b)所示。Zhang等202在液态金属中掺杂直径小于10 μm的铁颗粒,使液态金属具有磁场响应能力。利用磁场引导液态金属液滴在飞秒激光制备的硅胶图案表面上移动,可以实现液态金属在硅胶上的印刷功能。当液态金属电路损伤断开后,可准确移动液态金属液滴到损伤区域重新印刷电路,从而实现对柔性液态金属电路的修复。基于该液态金属电路制备的柔性压力传感器成功实现了对人体姿态的监测。将所制备柔性传感器贴合在手指上,当手抓握不同物体时,手指的弯曲程度不同,传感器就会产生不同的电阻信号变化。通过采集分析不同的信号,可以推测手指的形状以及手指动作的目的。Wu等203在柔性基底材料表面覆盖一层水溶性纸作为牺牲层,用来防止飞秒激光加工过程中导致的颗粒溅射,提高了未烧蚀区域的设计精度。基于此方法印刷的液态金属电路的线宽仅为25 μm。所制备的液态金属压力传感器具有应力分辨率高、器件结构简单的特点,即便是微小的蚂蚁爬过,该传感器也能监测到信号的变化,如图63(c)所示。Zhang等204制备了一种基于液态金属的高灵敏度全柔性触觉传感器。他们先采用飞秒激光在PDMS膜两侧制备超疏液态金属金字塔状微结构;然后以双面微金字塔作为介电层,液态金属作为电极层,PDMS膜作为衬底,制备了一种PDMS层-液态金属-微金字塔层-液态金属-PDMS层的夹心层结构,如图63(d)所示。该结构具有电容传感功能。所制备的传感器的灵敏度高达2.78 kPa-1,检测极限低至3 Pa左右,响应时间低至80 ms。超疏液态金属微结构使得液态金属电极具有超过10000次循环载荷的超高耐久性。此外,飞秒激光在传感器两侧表面上进一步制备的超疏水结构使得该传感器具有防污性能,传感器在高湿度环境下也能产生稳定的信号。采用全柔性材料制备的传感器能够感知复杂变形下的外部压力,已被成功应用于监测各种人体生理和运动信号,如图63(e)所示。

图 63. 飞秒激光制备的各种液态金属柔性电路。(a)液态金属线路152;(b)贴在手指上的简单液态金属电路152;(c)基于液态金属电路的传感器可感知蚂蚁爬过203;(d)制备基于液态金属夹心层结构的全柔性触觉传感器的过程204;(e)全柔性触觉传感器用于监测各种人体生理和运动信号204

Fig. 63. Various liquid-metal flexible circuits prepared by femtosecond laser. (a) Liquid metal pattern[152]; (b) simple liquid-metal circuit affixed to a finger[152]; (c) liquid metal-based sensor sensing ants walking[203]; (d) the process of preparing a fully flexible tactile sensor based on a liquid-metal sandwich layer structure[204]; (e) flexible tactile sensor for monitoring various human physiological and motor signals[204]

下载图片 查看所有图片

7.15 细胞工程

培养基底对于细胞的黏附、生长、分裂、迁移等行为有重要影响。除了被广泛关注的生物材料的表面粗糙度和化学组成外,浸润性也会影响细胞在固体表面上的行为。通过飞秒激光设计材料表面的浸润性和粗糙度,可以调控细胞与生物材料之间的相互作用。Ranella等205在不同激光能量密度下利用飞秒激光在硅表面上制备了多种锥形尖峰微结构(如图64(a)所示),这些锥形微结构的尺寸、高宽比和密度随着激光能量密度变化。与此同时,表面的浸润性也从亲水性变化到超疏水性(如图64(b)所示)。在这些表面上培养成纤维细胞后,细胞更倾向于黏附在亲水基底上,而在超疏水微结构上的细胞生长会被抑制(如图64(c)所示)。超疏水微结构对细胞生长的抑制作用主要是由于该结构抑制了基底与培养液的接触,即显著减小了成纤维细胞与固体表面的有效接触。对于激光结构化的表面,可以通过在疏水和亲水状态之间转换,实现细胞排斥和细胞亲和之间的转变。

图 64. 飞秒激光制备的超疏水表面和超滑表面对细胞生长的抑制作用。(a)飞秒激光在硅表面上制备的不同微纳结构205;(b)水滴浸润性变化205;(c)成纤维细胞的生长情况205;(d)~(f)C6神经胶质瘤细胞在平滑PET表面(d)、粗糙PET表面(e)和超滑PET表面(f)上的生长情况对比141

Fig. 64. Inhibition of cell growth by superhydrophobic and slippery surfaces prepared by femtosecond laser. (a) Different micro/nanostructures on silicon surface prepared by femtosecond laser[205]; (b) wettability change of water droplets[205]; (c) fibroblast growth[205]; (d)-(f) comparison of the growth of C6 glioma cells on untreated smooth PET surface (d), rough PET surface (e), and slippery PET surface (f)[141]

下载图片 查看所有图片

Yong等141先利用飞秒激光烧蚀在PET聚合物表面上制备多孔网络微结构,然后灌注润滑液赋予聚合物表面超滑特性。研究发现,相比于未处理的表面(如图64(d)所示),粗糙多孔微结构能够促进C6神经胶质瘤细胞的生长(如图64(e)所示),而所制备的超滑表面能够完全抑制该类细胞的生长(如图64(f)所示)。这说明飞秒激光制备的超滑表面具有抗生物黏附性,而这主要是由于润滑液层能够有效抑制这种贴壁细胞与基底材料接触。激光诱导的多孔微结构和超滑表面结构对细胞生长的促进和抑制作用使细胞或组织的可控性生长/培育成为了可能。

7.16 生物医疗

医疗植入材料(如人工心脏瓣膜、支架、人造血管等)在现代医学领域的广泛使用挽救了无数人的生命。然而,几乎所有的医用植入材料都面临着血液和植入物相互作用所导致的血液相容性问题。研究发现,超滑表面能够显著改善可植入材料的血液相容性。NiTi合金是一种常用的医疗可植入材料。Cheng等142采用飞秒激光在NiTi合金表面上制备了多孔微纳结构,然后进行低表面能处理和润滑液灌注,从而赋予了这种材料超滑特性。所制备超滑表面具有抗血液性,能够抑制血液的黏附。与普通NiTi合金相比,纤维蛋白原在超滑表面上的黏附性大幅降低,溶血率也从4.69%下降到了1.56%(显著低于国家标准,5%)。此外,所制备的超滑表面还具有优异的抗菌性,可以抑制细菌附着。该表面对大肠杆菌的抑菌率达到了98.14%,对金黄色葡萄球菌的抑菌率达到了99.32%。优异的抗凝血性能和抗菌性能以及极低的溶血率表明飞秒激光制备的超滑结构可以显著改善NiTi合金的血液相容性。飞秒激光可以潜在地赋予各种金属植入材料超滑特性,使医疗植入材料以更健康、更安全的方式被应用。

为了验证超滑表面在体内的性能,Cheng等195利用飞秒激光处理将超滑结构制备在NiTi金属丝表面上,并将其植入小鼠心脏内观察血栓的形成过程,如图65(a)所示。所制备的表面为自润滑抗凝血表面(SLACS)。小鼠在金属丝植入期间生长良好,无任何不良反应。经过一定时间的培育后,将金属丝取出进行检测。植入前的普通金属丝和超滑金属丝上都没有蛋白质黏附。在小鼠体内3周后,普通金属丝表面上出现了一些零星荧光;5周后,荧光强度增强。说明附着在普通金属丝上的蛋白质数量随着培育时间的延长而不断增加(如图65(b)所示)。相比之下,培育同样时间后,超滑金属丝上几乎看不到荧光,说明超滑特性有效地阻止了蛋白质的黏附(如图65(c)所示)。显微镜观察结果与上述结论相同。随着培育时间延长,普通金属丝表面上出现了直径为3 μm的丝状物质,并且丝状物质逐渐扩散,最终形成了覆盖表面的生物膜(如图65(d)、(f)所示)。而超滑金属丝表面上仅有极少量黏附,与植入前几乎没有区别(如图65(e)所示)。组织活检结果显示,附着在普通金属丝表面上的生物膜是由NiTi合金植入引起的组织增生(如图65(g)所示),增生组织中的毛细血管丰富,并伴有炎症。这说明普通植入表面不仅引起了凝血反应,还促进了组织增殖和炎症。相比之下,超滑金属丝在植入5周后仍保持表面光滑,无粘连和增生发生(如图65(h)所示)。动物实验表明超滑结构能够抑制植入材料上的组织增殖和炎症感染。由于表面光滑的润滑液层可以抑制组织的黏附和生物膜的形成,故而超滑表面在体内展现出了出色的血液相容性。

图 65. 飞秒激光制备的超滑表面在活体内的抗凝血性能195。(a)实验测试示意图;(b)未处理NiTi合金和(c)SLACS在体内植入不同时间后的荧光显微成像对比;(d)未处理NiTi合金和(e)SLACS在体内植入不同时间后的显微形貌对比;(f)(g)植入体内5周后,黏附在未处理金属表面上的生物膜的宏观形貌和组织活检结果;(h)植入体内5周后,SLACS的宏观形貌

Fig. 65. Anticoagulant property of slippery surface prepared by femtosecond laser in vivo[195]. (a) Schematic diagram of experimental test; (b)(c) comparison of fluorescence microscopy of the untreated NiTi alloy (b) and the SLACS (c) after implantation for different time; (d)(e) comparison of microstructures of the untreated NiTi alloy (d) and the SLACS (e) after implantation for different time; (f)(g) macromorphology and tissue biopsies of biofilms adhering to the untreated metal surface after 5 weeks implantation; (h) macroscopic morphology of the SLACS after 5 weeks implantation

下载图片 查看所有图片

7.17 海水淡化

当前,人类面临着严峻的水资源危机。在全世界很多区域,可饮用水依然非常匮乏。虽然海洋面积占到了地球表面积的70%,但是海水并不能直接被饮用。将海水淡化,是一种获取饮用水的有效路径。其中的一种有效方式是将海水蒸发,然后收集蒸汽凝结成的水,类似于蒸馏过程。通过这种方式可以去除海水中的盐等杂质,这种技术的关键是实现海水的快速蒸发。超亲水微结构可以增强水对固体表面的润湿作用,使水可以在材料表面充分铺展开,极大地增加液体与固体的接触面积。Singh等206在铝表面上通过飞秒激光处理制备了超亲水的多级粗糙沟槽结构,并基于该结构设计了一种污水处理装置(如图66(a)所示)。超亲水结构可以驱使污水或海水在制备结构上自发蔓延,即使表面倾斜一定角度或竖直放置,液体也能够沿表面向上铺展开。液体铺散的面积越大,越有利于挥发。此外,飞秒激光制备的微纳结构使铝表面呈黑色,说明这些微结构增强了对光的吸收。在太阳光照射下,阳光被铝吸收,铝表面被加热,进一步加速了液体的蒸发速率(如图66(b)、(c)所示)。在飞秒激光制备的超亲水微结构上,水的蒸发效率非常高,超过了几乎所有的理想设备(如图66(d)所示)。这种高效蒸发主要是由飞秒激光制备的高吸收率和超亲水多级微纳结构导致的。一方面,微纳结构增强了金属铝对太阳光的吸收,使金属铝表面在阳光照射下能够保持较高的温度。另一方面,该微纳结构的超亲水性使得污水可以在铝片表面上大面积铺散开,不但增大了液体与铝表面的接触面积(即传热面积),也增大了液体与空气的接触面积(即蒸发面积)。通过收集蒸发的水蒸气,可以获得可直接饮用的纯净水。利用这种装置处理污水,可以实现污水的净化。对14种最常见污染物(包括各种重金属、轻金属,以及工业、家庭和农业污染物)含量进行了检测,结果发现净化水中的污染物含量远低于净化前的污染物含量(如图66(e)所示)。对从池塘中收集的水样进行太阳能净化后,水中的细菌密度相比污染水样降低了4~5个数量级。净化水的污染水平远低于世界卫生组织规定的安全饮用水标准。利用这种装置也可以处理海水,使海水快速蒸发并脱盐。通过这种海水淡化过程,可以获得大量的可饮用水。

图 66. 基于飞秒激光制备的超亲水微纳结构实现污水净化206。(a)污水净化装置示意图;(b)阳光照射下激光结构化金属铝片表面的液体蒸发和温度;(c)金属表面温度升高的过程;(d)水蒸发效率对比;(e)污水净化前后不同污染物含量对比

Fig. 66. Sewage purification based on superhydrophilic microstructure prepared by femtosecond laser[206]. (a) Schematic diagram of sewage purification device; (b) liquid evaporation and temperature on the surface of the laser-structured aluminum sheet under sunlight; (c) the process of temperature rising on the metal surface; (d) comparison of water evaporation efficiency; (e) comparison of different pollutants contents before and after sewage purification

下载图片 查看所有图片

7.18 表面增强拉曼散射(SERS)

表面增强拉曼散射(SERS)已经成为血液检测、食品安全和环境监测等应用领域中最有前途的敏感检测技术之一。实现拉曼信号放大的最常见方法是构建纳米热点,热点通过与激发光耦合来诱导金属等离子体共振。热点位置处出现近电场增强,进而实现信号放大。2009年,Diebold等207首次报道了一种使用飞秒激光制备SERS基底的方法。他们先利用激光均匀烧蚀n型硅表面,随后热沉积80 nm厚的银膜,获得了一个活性面积超过25 mm2、活性银纳米颗粒尺寸为50~100 nm的SERS基底。他们在该基底上实现了苯硫醇的均匀高灵敏度检测,相对标准偏差仅为12.9%,增强因子达到了107。最近,具有特殊表面浸润性的SERS基底已被应用于检测微量分析物。将含有分析物的液滴置于超疏水基底上,分析物在液滴蒸发过程中可以无损浓缩,实现微量探测。然而,浓缩后的沉积区域占整个SERS基底的面积比很小,定位沉积区域位置存在很大困难。为此,Yu等208使用两步激光烧蚀法在铜箔上构建了超疏水/超亲水复合表面(如图67(a)、(b)所示)。他们先在铜箔表面制备微纳结构,接着用硬脂酸将其修饰为超疏水状态,然后利用激光烧蚀选择性去除部分区域的低表面能物质,使之转变为超亲水区域。这样便获得了超疏水/超亲水复合表面(如图67(c)所示)。随着液滴的逐渐挥发(如图67(d)所示),在疏水径向力作用下,分析物最终沉积到局部亲水区域,如此便可实现定向检测(如图67(e)~(g)所示)。除了平整表面(如硅晶片和铜箔)以外,纳米尺度模板也被应用于制备SERS基底。Hu等209在阳极氧化铝模板上利用飞秒激光构建微米结构,制备了一种具有双层结构的SERS基底。其中,上层微纳复合结构用于浓缩分析物,而下层纳米柱阵列用于提供高密度有序热点,进而实现信号放大。在两者的协同作用下,SERS基底实现了对阿霉素分子的微量均匀检测,检测极限为10-7 mol/L,相对标准偏差为7.69%。

图 67. 基于飞秒激光制备的疏水/超亲水复合图案结构实现表面增强拉曼散射检测208。(a)超疏水/超亲水复合表面示意图及激光加工系统;(b)基于液滴浓缩实现拉曼信号增强示意图;(c)超疏水/超亲水结构加工过程;(d)液滴浓缩过程;(e)浓缩后待检测物质分布的荧光显微镜图;(f)检测物质浓缩示意图;(g)不同浓度R6G的拉曼光谱

Fig. 67. SERS detection based on superwetting composited patterns designed by femtosecond laser[208]. (a) Diagram of superhydrophobic/superhydrophilic composited surface and laser processing system; (b) schematic diagram of Raman signal enhancement based on droplet concentration; (c) preparation process of superhydrophobic/superhydrophilic structures; (d) droplet concentration process; (e) fluorescence microscopy of the distribution of the substance to be detected after concentration; (f) diagram of the concentration process of the detecting substance; (g) Raman spectra of different concentrations of R6G

下载图片 查看所有图片

7.19 其他

以上介绍的应用只是浸润性相关应用的冰山一角,飞秒激光制备的极端浸润性材料还能被应用于防污、防海洋生物黏附、电催化等其他领域中。将这些应用组合,又会有更多的应用场景。尽管在实验上已经初步证实了飞秒激光制备的超浸润材料在上述应用领域发挥着重要作用,但在很多情况下,具体的作用机制并不十分清晰,需要进一步揭示这些应用背后的作用原理与机制,以获得最佳的应用效果。另外,需要在真实的应用场景中,使飞秒激光制备的特殊浸润性材料真正发挥作用。

8 结论与展望

飞秒激光是当前先进微纳制造领域的重要工具之一。由于材料表面的浸润性主要由表面微观几何结构和化学组成共同决定,因而飞秒激光被广泛应用于调控材料表面的浸润性。基于飞秒激光对材料表面微纳结构的精细设计,可以实现一系列特殊的极端浸润性。超亲水性可以通过在本征亲水材料表面构建足够粗糙的微纳结构来实现。实现超疏水性,一般需要根据材料的不同采用两种方式:对于本征疏水材料,可以直接在材料表面上构建合适的微纳米多级结构;而对于本征亲水材料,采用飞秒激光构建微纳结构后,通常还需要进一步结合化学修饰的方法降低表面能。水滴在超亲水表面上能够快速铺散开,相反,超疏水表面具有排斥水、防水的功能。超疏油表面可以分为在空气中工作和在水下工作两类不同的情形。制备空气中的超疏油表面需要引入内角弯曲微结构,并需要进行严苛的低表面能化学修饰。实现水下超疏油则需要在亲水基底表面上构建微纳结构。超疏油表面能够排斥油脂类液体以及一些低表面能的有机液体。一般地,超亲水表面在水下具有超疏气性,而超疏水表面在水下具有超亲气性。水下超疏气表面能够排斥气泡的黏附,而超亲气表面则可以吸附水下的微小气泡。基于飞秒激光诱导的多孔网络微结构制备的超滑表面可使液滴与表面的接触处于液/液接触模式,能够排斥各类液体。在亲水材料表面上构建微纳结构可以获得水下超疏聚合物性,该聚合物排斥性可用于抑制液体聚合物与固体材料的黏附以及聚合物形状的设计。不论是超疏水表面还是超亲水表面,飞秒激光诱导的微纳结构都具有超疏液态金属性,这使得液态金属不会黏附在结构化表面上。通过飞秒激光在柔性材料表面设计图案化微结构,可以将液态金属印刷成图案化电路,实现柔性电子器件的制备。基于飞秒激光对表面微纳结构的设计可以获得可调黏滞性超浸润表面,所制备表面对液滴的黏附性可以从极低变化到极高。飞秒激光制备的各向异性微结构可以实现各向异性浸润性。通过表面化学调谐、表面微形貌调谐和所处环境调谐三种策略,可以实现激光结构化表面浸润性的智能可逆转换。基于飞秒激光制备的特殊浸润性材料,可以实现防水/防油/防气、自清洁、液滴操控、液体图案化、浮力增强、微小液滴/气泡释放、油水分离、水气分离、防结冰、防腐蚀、水下减阻、水雾收集、微流控、柔性电路/电子器件、细胞工程、生物医疗、海水淡化、表面增强拉曼散射等一系列功能应用。

与其他制备超浸润微结构的方法相比,飞秒激光加工方法具有独特的优势。首先,飞秒激光可以加工几乎任意给定的材料,这一特点使得飞秒激光调控材料表面浸润性技术不会局限于特定材料,能够赋予更多材料以特殊的浸润性能。其次,飞秒激光加工过程相对比较简单,通常经一步烧蚀便可直接形成多级微纳结构。相同的加工参数和加工条件可以很容易延伸到加工其他同类材料,而传统方法则常常需要多步甚至要结合多种不同方法来构建超浸润性所需的分级微结构。最后,飞秒激光加工方法的灵活性比较强。一方面,所制备微纳结构的形貌可以通过加工参数的调整而简单地改变。另一方面,飞秒激光可精确控制加工位置,具有设计微纳图案化结构的强大能力。图案化的超浸润结构可以实现很多均匀微纳结构表面无法实现的性质和功能。灵活性强的特点使得飞秒激光可以实现浸润性的复杂精细调控。

当前,飞秒激光调控材料表面浸润性技术也面临着一些挑战。例如,加工效率目前依然是制约飞秒激光微加工技术应用的一大瓶颈。尽管已有许多新的加工策略被提出,如激光并行加工和结合光场调控的加工方法,但其加工效率依然无法满足工业化应用的要求。也就是说,在短时间内制备大面积的超浸润表面依然是个难题。在激光烧蚀材料表面过程中,如果激光焦点偏离材料表面过多(即离焦),便无法在表面上获得想要的微纳结构。受限于离焦的困扰,在复杂曲面上制备均匀的超浸润微纳结构目前也是一个难题。此外,与其他方法制备的超浸润表面一样,飞秒激光实现的超浸润性在实际应用中也面临着稳定性的难题。这些超浸润表面在遭受摩擦或在特殊工作环境中容易失去最初的极端浸润性。因此,未来该研究领域需要重点解决这些瓶颈,使飞秒激光制备的超浸润材料大规模地应用于实际生活。

参考文献

[1] Liu M J, Wang S T, Jiang L. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2017, 2: 17036.

[2] Zhang W L, Wang D H, Sun Z N, et al. Robust superhydrophobicity: mechanisms and strategies[J]. Chemical Society Reviews, 2021, 50(6): 4031-4061.

[3] Yao X, Song Y L, Jiang L. Applications of bio-inspired special wettable surfaces[J]. Advanced Materials, 2011, 23(6): 719-734.

[4] Jeevahan J, Chandrasekaran M, Joseph G B, et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2): 231-250.

[5] Tian Y, Su B, Jiang L. Interfacial material system exhibiting superwettability[J]. Advanced Materials, 2014, 26(40): 6872-6897.

[6] Zhu Z P, Zheng S, Peng S, et al. Superlyophilic interfaces and their applications[J]. Advanced Materials, 2017, 29(45): 1703120.

[7] Liu M J, Zheng Y M, Zhai J, et al. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion[J]. Accounts of Chemical Research, 2010, 43(3): 368-377.

[8] Tang X, Tian Y, Tian X W, et al. Design of multi-scale textured surfaces for unconventional liquid harnessing[J]. Materials Today, 2021, 43: 62-83.

[9] Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials[J]. Advanced Materials, 2008, 20(15): 2842-2858.

[10] Xu J K, Xiu S Y, Lian Z X, et al. Bioinspired materials for droplet manipulation: principles, methods and applications[J]. Droplet, 2022, 1(1): 11-37.

[11] Darmanin T, Guittard F. Superhydrophobic and superoleophobic properties in nature[J]. Materials Today, 2015, 18(5): 273-285.

[12] Bhushan B. Biomimetics: lessons from nature: an overview[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367(1893): 1445-1486.

[13] Stratakis E, Bonse J, Heitz J, et al. Laser engineering of biomimetic surfaces[J]. Materials Science and Engineering: Reports, 2020, 141: 100562.

[14] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.

[15] Ragesh P, Ganesh V A, Nair S V, et al. A review on ‘self-cleaning and multifunctional materials’[J]. Journal of Materials Chemistry A, 2014, 2(36): 14773-14797.

[16] Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36.

[17] Gao X, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 2007, 19(17): 2213-2217.

[18] Barthlott W, Schimmel T, Wiersch S, et al. The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water[J]. Advanced Materials, 2010, 22(21): 2325-2328.

[19] Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34.

[20] Liu M J, Wang S T, Wei Z X, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advanced Materials, 2009, 21(6): 665-669.

[21] Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447.

[22] Si Y F, Dong Z C, Jiang L. Bioinspired designs of superhydrophobic and superhydrophilic materials[J]. ACS Central Science, 2018, 4(9): 1102-1112.

[23] Wen L P, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications[J]. Angewandte Chemie International Edition, 2015, 54(11): 3387-3399.

[24] Liu K S, Yao X, Jiang L. Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 2010, 39(8): 3240-3255.

[25] Wang D H, Sun Q Q, Hokkanen M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59.

[26] Cao M Y, Jiang L. Superwettability integration: concepts, design and applications[J]. Surface Innovations, 2016, 4(4): 180-194.

[27] Su B, Tian Y, Jiang L. Bioinspired interfaces with superwettability: from materials to chemistry[J]. Journal of the American Chemical Society, 2016, 138(6): 1727-1748.

[28] Jiang T, Guo Z G, Liu W M. Biomimetic superoleophobic surfaces: focusing on their fabrication and applications[J]. Journal of Materials Chemistry A, 2015, 3(5): 1811-1827.

[29] Wang J N, Zhang Y L, Liu Y, et al. Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications[J]. Nanoscale, 2015, 7(16): 7101-7114.

[30] Teisala H, Tuominen M, Kuusipalo J. Superhydrophobic coatings on cellulose-based materials: fabrication, properties, and applications[J]. Advanced Materials Interfaces, 2014, 1(1): 1300026.

[31] Das S, Kumar S, Samal S K, et al. A review on superhydrophobic polymer nanocoatings: recent development and applications[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2727-2745.

[32] Milionis A, Loth E, Bayer I S. Recent advances in the mechanical durability of superhydrophobic materials[J]. Advances in Colloid and Interface Science, 2016, 229: 57-79.

[33] Wen G, Guo Z G, Liu W M. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications[J]. Nanoscale, 2017, 9(10): 3338-3366.

[34] Si Y F, Guo Z G. Superhydrophobic nanocoatings: from materials to fabrications and to applications[J]. Nanoscale, 2015, 7(14): 5922-5946.

[35] Yong J L, Chen F, Yang Q, et al. Superoleophobic surfaces[J]. Chemical Society Reviews, 2017, 46(14): 4168-4217.

[36] Pan S J, Guo R, Björnmalm M, et al. Coatings super-repellent to ultralow surface tension liquids[J]. Nature Materials, 2018, 17(11): 1040-1047.

[37] Nishimoto S, Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity[J]. RSC Advances, 2013, 3(3): 671-690.

[38] Lü P, Zhang Y L, Han D D, et al. Directional droplet transport on functional surfaces with superwettabilities[J]. Advanced Materials Interfaces, 2021, 8(12): 2100043.

[39] Lin F Y, Wo K Y, Fan X J, et al. Directional transport of underwater bubbles on solid substrates: principles and applications[J]. ACS Applied Materials & Interfaces, 2023, 15(8): 10325-10340.

[40] Hou L L, Liu X F, Ge X R, et al. Designing of anisotropic gradient surfaces for directional liquid transport: fundamentals, construction, and applications[J]. The Innovation, 2023, 4(6): 100508.

[41] Xue Z X, Cao Y Z, Liu N, et al. Special wettable materials for oil/water separation[J]. Journal of Materials Chemistry A, 2014, 2(8): 2445-2460.

[42] Wang B, Liang W X, Guo Z G, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature[J]. Chemical Society Reviews, 2015, 44(1): 336-361.

[43] Yong J L, Huo J L, Chen F, et al. Oil/water separation based on natural materials with super-wettability: recent advances[J]. Physical Chemistry Chemical Physics, 2018, 20(39): 25140-25163.

[44] Lü J Y, Song Y L, Jiang L, et al. Bio-inspired strategies for anti-icing[J]. ACS Nano, 2014, 8(4): 3152-3169.

[45] Kreder M J, Alvarenga J, Kim P, et al. Design of anti-icing surfaces: smooth, textured or slippery?[J]. Nature Reviews Materials, 2016, 1: 15003.

[46] Stratakis E, Ranella A, Fotakis C. Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications[J]. Biomicrofluidics, 2011, 5(1): 013411.

[47] Shen L Y, Wang B L, Wang J L, et al. Asymmetric free-standing film with multifunctional anti-bacterial and self-cleaning properties[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4476-4483.

[48] Jin H C, Tian L M, Bing W, et al. Bioinspired marine antifouling coatings: status, prospects, and future[J]. Progress in Materials Science, 2022, 124: 100889.

[49] Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review[J]. Biofouling, 2006, 22(5/6): 339-360.

[50] Zhang S N, Huang J Y, Chen Z, et al. Bioinspired special wettability surfaces: from fundamental research to water harvesting applications[J]. Small, 2017, 13(3): 1602992.

[51] Ju J, Bai H, Zheng Y M, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3: 1247.

[52] Jokinen V, Sainiemi L, Franssila S. Complex droplets on chemically modified silicon nanograss[J]. Advanced Materials, 2008, 20(18): 3453-3456.

[53] Pan S J, Kota A K, Mabry J M, et al. Superomniphobic surfaces for effective chemical shielding[J]. Journal of the American Chemical Society, 2013, 135(2): 578-581.

[54] Zhan Z B, Li Z H, Yu Z, et al. Superhydrophobic Al surfaces with properties of anticorrosion and reparability[J]. ACS Omega, 2018, 3(12): 17425-17429.

[55] Shi F, Niu J, Liu J, et al. Towards understanding why a superhydrophobic coating is needed by water striders[J]. Advanced Materials, 2007, 19(17): 2257-2261.

[56] Yong J L, Yang Q, Chen F, et al. A bioinspired planar superhydrophobic microboat[J]. Journal of Micromechanics and Microengineering, 2014, 24(3): 035006.

[57] Zhan Z B, ElKabbash M, Cheng J L, et al. Highly floatable superhydrophobic metallic assembly for aquatic applications[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48512-48517.

[58] Songok J, Tuominen M, Teisala H, et al. Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow[J]. ACS Applied Materials & Interfaces, 2014, 6(22): 20060-20066.

[59] Wang S L, Wang T Q, Ge P, et al. Controlling flow behavior of water in microfluidics with a chemically patterned anisotropic wetting surface[J]. Langmuir, 2015, 31(13): 4032-4039.

[60] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149.

[61] Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews, 2013, 7(3): 385-407.

[62] Lin Z Y, Hong M H. Femtosecond laser precision engineering: from micron, submicron, to nanoscale[J]. Ultrafast Science, 2021, 2021: 9783514.

[63] Yong J L, Yang Q, Guo C L, et al. A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation[J]. RSC Advances, 2019, 9(22): 12470-12495.

[64] Chong T C, Hong M H, Shi L P. Laser precision engineering: from microfabrication to nanoprocessing[J]. Laser & Photonics Reviews, 2010, 4(1): 123-143.

[65] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication[J]. Applied Physics Reviews, 2014, 1(4): 041303.

[66] Zhang D S, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: fundamentals and applications[J]. Chemical Reviews, 2017, 117(5): 3990-4103.

[67] Wang S, Jiang L. Definition of superhydrophobic states[J]. Advanced Materials, 2007, 19(21): 3423-3424.

[68] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.

[69] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.

[70] Yong J L, Peng Y B, Wang X W, et al. Self-driving underwater “aerofluidics”[J]. Advanced Science, 2023, 10(21): 2301175.

[71] Yong J L, Chen F, Li M J, et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces[J]. Journal of Materials Chemistry A, 2017, 5(48): 25249-25257.

[72] Yong J L, Singh S C, Zhan Z B, et al. Femtosecond-laser-produced underwater “superpolymphobic” nanorippled surfaces: repelling liquid polymers in water for applications of controlling polymer shape and adhesion[J]. ACS Applied Nano Materials, 2019, 2(11): 7362-7371.

[73] Wolfe D B, Ashcom J B, Hwang J C, et al. Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser[J]. Advanced Materials, 2003, 15(1): 62-65.

[74] Bonse J, Baudach S, Krüger J, et al. Femtosecond laser ablation of silicon-modification thresholds and morphology[J]. Applied Physics A, 2002, 74(1): 19-25.

[75] Yong J L, Yang Q, Chen F, et al. Reversible underwater lossless oil droplet transportation[J]. Advanced Materials Interfaces, 2015, 2(2): 1400388.

[76] Bai X, Yang Q, Fang Y, et al. Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation[J]. Chemical Engineering Journal, 2020, 400: 125930.

[77] Yong J L, Chen F, Yang Q, et al. Photoinduced switchable underwater superoleophobicity-superoleophilicity on laser modified titanium surfaces[J]. Journal of Materials Chemistry A, 2015, 3(20): 10703-10709.

[78] Chen F, Zhang D S, Yang Q, et al. Bioinspired wetting surface via laser microfabrication[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6777-6792.

[79] Yong J L, Chen F, Yang Q, et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 2015, 11(46): 8897-8906.

[80] Yong J L, Chen F, Yang Q, et al. A review of femtosecond-laser-induced underwater superoleophobic surfaces[J]. Advanced Materials Interfaces, 2018, 5(7): 1870033.

[81] Zhang Y Y, Jiao Y L, Li C Z, et al. Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications[J]. International Journal of Extreme Manufacturing, 2020, 2(3): 032002.

[82] Yong J L, Yang Q, Hou X, et al. Nature-inspired superwettability achieved by femtosecond lasers[J]. Ultrafast Science, 2022, 2022: 9895418.

[83] Vorobyev A Y, Guo C L. Metal pumps liquid uphill[J]. Applied Physics Letters, 2009, 94(22): 224102.

[84] Vorobyev A Y, Guo C L. Laser turns silicon superwicking[J]. Optics Express, 2010, 18(7): 6455-6460.

[85] Vorobyev A Y, Guo C L. Water sprints uphill on glass[J]. Journal of Applied Physics, 2010, 108(12): 123512.

[86] Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860.

[87] Yong J L, Chen F, Fang Y, et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39863-39871.

[88] Yong J L, Chen F, Yang Q, et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays[J]. Langmuir, 2013, 29(10): 3274-3279.

[89] Yong J L, Yang Q, Chen F, et al. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion[J]. Applied Surface Science, 2014, 288: 579-583.

[90] Yong J L, Chen F, Yang Q, et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion[J]. The Journal of Physical Chemistry C, 2013, 117(47): 24907-24912.

[91] Yong J L, Yang Q, Chen F, et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2014, 2(15): 5499-5507.

[92] Yong J L, Fang Y, Chen F, et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions[J]. Applied Surface Science, 2016, 389: 1148-1155.

[93] Fang Y, Yong J L, Chen F, et al. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications[J]. Applied Physics A, 2016, 122(9): 827.

[94] Yong J L, Yang Q, Huo J L, et al. Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 µm) for bubble/gas manipulation[J]. International Journal of Extreme Manufacturing, 2022, 4(1): 015002.

[95] Baldacchini T, Carey J E, Zhou M, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir, 2006, 22(11): 4917-4919.

[96] Zorba V, Stratakis E, Barberoglou M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 2008, 20(21): 4049-4054.

[97] Barberoglou M, Zorba V, Stratakis E, et al. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon[J]. Applied Surface Science, 2009, 255(10): 5425-5429.

[98] Zhang D S, Chen F, Fang G P, et al. Wetting characteristics on hierarchical structures patterned by a femtosecond laser[J]. Journal of Micromechanics and Microengineering, 2010, 20(7): 075029.

[99] Chen F, Zhang D S, Yang Q, et al. Anisotropic wetting on microstrips surface fabricated by femtosecond laser[J]. Langmuir, 2011, 27(1): 359-365.

[100] Zhang D S, Chen F, Yang Q, et al. Mutual wetting transition between isotropic and anisotropic on directional structures fabricated by femotosecond laser[J]. Soft Matter, 2011, 7(18): 8337-8342.

[101] Yong J L, Yang Q, Chen F, et al. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser[J]. Applied Physics A, 2013, 111(1): 243-249.

[102] Wu B, Zhou M, Li J, et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser[J]. Applied Surface Science, 2009, 256(1): 61-66.

[103] Vorobyev A Y, Guo C L. Multifunctional surfaces produced by femtosecond laser pulses[J]. Journal of Applied Physics, 2015, 117(3): 033103.

[104] Yong J L, Chen F, Yang Q, et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability[J]. Chemical Communications, 2015, 51(48): 9813-9816.

[105] Zhou M, Yang H F, Li B J, et al. Forming mechanisms and wettability of double-scale structures fabricated by femtosecond laser[J]. Applied Physics A, 2009, 94(3): 571-576.

[106] Lin Y, Han J P, Cai M Y, et al. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability[J]. Journal of Materials Chemistry A, 2018, 6(19): 9049-9056.

[107] Bai X, Yang Q, Fang Y, et al. Superhydrophobicity-memory surfaces prepared by a femtosecond laser[J]. Chemical Engineering Journal, 2020, 383: 123143.

[108] Bellanger H, Darmanin T, de Givenchy E T, et al. Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories[J]. Chemical Reviews, 2014, 114(5): 2694-2716.

[109] Xue Z X, Liu M J, Jiang L. Recent developments in polymeric superoleophobic surfaces[J]. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(17): 1209-1224.

[110] Chu Z L, Seeger S. Superamphiphobic surfaces[J]. Chemical Society Reviews, 2014, 43(8): 2784-2798.

[111] Liu H, Wang Y D, Huang J Y, et al. Bioinspired surfaces with superamphiphobic properties: concepts, synthesis, and applications[J]. Advanced Functional Materials, 2018, 28(19): 1870123.

[112] Tuteja A, Choi W, Ma M L, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856): 1618-1622.

[113] Tuteja A, Choi W, Mabry J M, et al. Robust omniphobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 18200-18205.

[114] Helbig R, Nickerl J, Neinhuis C, et al. Smart skin patterns protect springtails[J]. PLoS One, 2011, 6(9): e25105.

[115] Dong S L, Zhang X L, Li Q, et al. Springtail-inspired superamphiphobic ordered nanohoodoo arrays with quasi-doubly reentrant structures[J]. Small, 2020, 16(19): 200079.

[116] Yun G T, Jung W B, Oh M S, et al. Springtail-inspired superomniphobic surface with extreme pressure resistance[J]. Science Advances, 2018, 4(8): eaat4978.

[117] Liu X J, Gu H C, Wang M, et al. 3D printing of bioinspired liquid superrepellent structures[J]. Advanced Materials, 2018, 30(22): 1800103.

[118] Yang Y, Zhang Y, Hu Y, et al. Femtosecond laser regulated ultrafast growth of mushroom-like architrcture for oil repellency and manipulation[J]. Nano Letters, 2021, 21(21): 9301-9309.

[119] Han J P, Cai M Y, Lin Y, et al. 3D re-entrant nanograss on microcones for durable superamphiphobic surfaces via laser-chemical hybrid method[J]. Applied Surface Science, 2018, 456: 726-736.

[120] Yang J, Zhang Z Z, Xu X H, et al. Superhydrophilic-superoleophobic coatings[J]. Journal of Materials Chemistry, 2012, 22(7): 2834-2837.

[121] Yong J L, Chen F, Yang Q, et al. Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication[J]. Journal of Materials Chemistry A, 2014, 2(23): 8790-8795.

[122] Li G Q, Zhang Z, Wu P C, et al. One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation[J]. RSC Advances, 2016, 6(44): 37463-37471.

[123] Yong J L, Chen F, Yang Q, et al. Bioinspired transparent underwater superoleophobic and anti-oil surfaces[J]. Journal of Materials Chemistry A, 2015, 3(18): 9379-9384.

[124] Yong J L, Chen F, Yang Q, et al. Femtosecond laser controlling underwater oil-adhesion of glass surface[J]. Applied Physics A, 2015, 119(3): 837-844.

[125] Huo J L, Yang Q, Chen F, et al. Underwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation[J]. Langmuir, 2017, 33(15): 3659-3665.

[126] Zhang J Z, Chen F, Yang Q, et al. A widely applicable method to fabricate underwater superoleophobic surfaces with low oil-adhesion on different metals by a femtosecond laser[J]. Applied Physics A, 2017, 123(9): 594.

[127] Li G Q, Lu Y, Wu P C, et al. Fish scale inspired design of underwater superoleophobic microcone arrays by sucrose solution assisted femtosecond laser irradiation for multifunctional liquid manipulation[J]. Journal of Materials Chemistry A, 2015, 3(36): 18675-18683.

[128] Yu C M, Zhang P P, Wang J M, et al. Superwettability of gas bubbles and its application: from bioinspiration to advanced materials[J]. Advanced Materials, 2017, 29(45): 1703053.

[129] George J E, Chidangil S, George S D. Recent progress in fabricating superaerophobic and superaerophilic surfaces[J]. Advanced Materials Interfaces, 2017, 4(9): 1601088.

[130] Liu X C, Yang F C, Guo J, et al. New insights into unusual droplets: from mediating the wettability to manipulating the locomotion modes[J]. Chemical Communications, 2020, 56(94): 14757-14788.

[131] Seymour R S, Hetz S K. The diving bell and the spider: the physical gill of Argyroneta aquatica[J]. The Journal of Experimental Biology, 2011, 214(13): 2175-2181.

[132] van Breugel F, Dickinson M. Superhydrophobic diving flies (Ephydra hians) and the hypersaline waters of Mono Lake[J]. Proceedings of the National Academy of Sciences, 2017, 114: 13483-13488.

[133] Zhang Y, Hu Y, Xu B, et al. Robust underwater air layer retention and restoration on salvinia inspired self-grown heterogeneous architectures[J]. ACS Nano, 2022, 16(2): 2730-2740.

[134] Yong J L, Singh S C, Zhan Z B, et al. Reducing adhesion for dispensing tiny water/oil droplets and gas bubbles by femtosecond laser-treated needle nozzles: superhydrophobicity, superoleophobicity, and superaerophobicity[J]. ChemNanoMat, 2019, 5(2): 241-249.

[135] Yong J L, Singh S, Zhan Z B, et al. How to obtain six different superwettabilities on a same microstructured pattern: relationship between various superwettabilities in different solid/liquid/gas systems[J]. Langmuir, 2019, 35: 921-927.

[136] Yong J L, Singh S, Zhan Z B, et al. Substrate-independent, fast, and reversible switching between underwater superaerophobicity and aerophilicity on the femtosecond laser-induced superhydrophobic surfaces for selectively repelling or capturing bubbles in water[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8667-8675.

[137] Huo J L, Yang Q, Yong J L, et al. Underwater superaerophobicity/superaerophilicity and unidirectional bubble passage based on the femtosecond laser-structured stainless steel mesh[J]. Advanced Materials Interfaces, 2020, 7(14): 1902128.

[138] Bohn H F, Federle W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(39): 14138-14143.

[139] Chen H W, Zhang P F, Zhang L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7597): 85-89.

[140] Yong J L, Chen F, Yang Q, et al. Nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing[J]. Advanced Materials Interfaces, 2017, 4(20): 1700552.

[141] Yong J L, Huo J L, Yang Q, et al. Femtosecond laser direct writing of porous network microstructures for fabricating super-slippery surfaces with excellent liquid repellence and anti-cell proliferation[J]. Advanced Materials Interfaces, 2018, 5(7): 1701479.

[142] Cheng Y, Yang Q, Lu Y, et al. A femtosecond Bessel laser for preparing a nontoxic slippery liquid-infused porous surface (SLIPS) for improving the hemocompatibility of NiTi alloys[J]. Biomaterials Science, 2020, 8(23): 6505-6514.

[143] Fang Y, Yong J L, Cheng Y, et al. Liquid-infused slippery stainless steel surface prepared by alcohol-assisted femtosecond laser ablation[J]. Advanced Materials Interfaces, 2021, 8(5): 2001334.

[144] Liang J, Shan C, Wang H, et al. Highly stable and transparent slippery surface on silica glass fabricated by femtosecond laser[J]. Advanced Engineering Materials, 2022, 24(10): 2200708.

[145] Yong J L, Yang Q, Hou X, et al. Underwater superpolymphobicity: concept, achievement, and applications[J]. Nano Select, 2021, 2(6): 1011-1022.

[146] Yong J L, Zhan Z B, Singh S C, et al. Femtosecond laser-structured underwater “superpolymphobic” surfaces[J]. Langmuir, 2019, 35(28): 9318-9322.

[147] Yong J L, Zhan Z B, Singh S C, et al. Microfluidic channels fabrication based on underwater superpolymphobic microgrooves produced by femtosecond laser direct writing[J]. ACS Applied Polymer Materials, 2019, 1(11): 2819-2825.

[148] Zhang J, Yao Y Y, Sheng L, et al. Self-fueled biomimetic liquid metal mollusk[J]. Advanced Materials, 2015, 27(16): 2648-2655.

[149] Kazem N, Hellebrekers T, Majidi C. Soft multifunctional composites and emulsions with liquid metals[J]. Advanced Materials, 2017, 29(27): 1605985.

[150] Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry[J]. Chemical Society Reviews, 2018, 47(11): 4073-4111.

[151] Ilyas N, Cook A, Tabor C E. Designing liquid metal interfaces to enable next generation flexible and reconfigurable electronics[J]. Advanced Materials Interfaces, 2017, 4(15): 1700141.

[152] Yong J L, Zhang C J, Bai X, et al. Designing “supermetalphobic” surfaces that greatly repel liquid metal by femtosecond laser processing: does the surface chemistry or microstructure play a crucial role?[J]. Advanced Materials Interfaces, 2020, 7(6): 1901931.

[153] Joshipura I D, Ayers H R, Castillo G A, et al. Patterning and reversible actuation of liquid gallium alloys by preventing adhesion on rough surfaces[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44686-44695.

[154] Youngblood J P, McCarthy T J. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly (tetrafluoroethylene) using radio frequency plasma[J]. Macromolecules, 1999, 32(20): 6800-6806.

[155] Cheng Z J, Wang J W, Lai H, et al. pH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low-adhesive superoleophobic copper mesh film[J]. Langmuir, 2015, 31(4): 1393-1399.

[156] Zhang J Z, Zhang K Y, Yong J L, et al. Femtosecond laser preparing patternable liquid-metal-repellent surface for flexible electronics[J]. Journal of Colloid and Interface Science, 2020, 578: 146-154.

[157] Zhang J Z, Yong J L, Zhang C J, et al. Liquid metal-based reconfigurable and repairable electronics designed by a femtosecond laser[J]. ACS Applied Electronic Materials, 2020, 2(8): 2685-2691.

[158] Feng L, Zhang Y N, Xi J M, et al. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24(8): 4114-4119.

[159] Zhang D S, Chen F, Yang Q, et al. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4905-4912.

[160] Long J Y, Fan P X, Gong D W, et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9858-9865.

[161] Wu D, Wang J N, Wu S Z, et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Advanced Functional Materials, 2011, 21(15): 2927-2932.

[162] Long J Y, Fan P X, Jiang D F, et al. Anisotropic sliding of water droplets on the superhydrophobic surfaces with anisotropic groove-like micro/nano structures[J]. Advanced Materials Interfaces, 2016, 3(24): 1600641.

[163] Yong J L, Chen F, Yang Q, et al. Controllable underwater anisotropic oil-wetting[J]. Applied Physics Letters, 2014, 105(7): 071608.

[164] Cheng Y, Yang Q, Fang Y, et al. Underwater anisotropic 3D superoleophobic tracks applied for the directional movement of oil droplets and the microdroplets reaction[J]. Advanced Materials Interfaces, 2019, 6(10): 1900067.

[165] Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3(2): 178-182.

[166] Cai Y, Lin L, Xue Z X, et al. Filefish-inspired surface design for anisotropic underwater oleophobicity[J]. Advanced Functional Materials, 2014, 24(6): 809-816.

[167] Yong J L, Yang Q, Chen F, et al. Bioinspired superhydrophobic surfaces with directional adhesion[J]. RSC Advances, 2014, 4(16): 8138-8143.

[168] Fang Y, Yong J L, Chen F, et al. Bioinspired fabrication of bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser[J]. Advanced Materials Interfaces, 2018, 5(6): 1701245.

[169] Wu D, Zhang Z, Zhang Y Y, et al. High-performance unidirectional manipulation of microdroplets by horizontal vibration on femtosecond laser-induced slant microwall arrays[J]. Advanced Materials, 2020, 32(48): 2005039.

[170] Jiao Y L, Li C Z, Wu S Z, et al. Switchable underwater bubble wettability on laser-induced titanium multiscale micro-/ nanostructures by vertically crossed scanning[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16867-16873.

[171] Zhang J Z, Yong J L, Yang Q, et al. Femtosecond laser-induced underwater superoleophobic surfaces with reversible pH-responsive wettability[J]. Langmuir, 2019, 35(9): 3295-3301.

[172] Jiang S J, Hu Y L, Wu H, et al. Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration[J]. Advanced Materials, 2019, 31(15): 1807507.

[173] Jiang S J, Hu Y L, Wu H, et al. Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transfer[J]. Nano Letters, 2020, 20(10): 7519-7529.

[174] Shao K X, Jiang S J, Hu Y L, et al. Bioinspired lubricated slippery magnetic responsive microplate array for high performance multi-substance transport[J]. Advanced Functional Materials, 2022, 32(40): 2205831.

[175] Jiao Y L, Li C Z, Lü X D, et al. In situ tunable bubble wettability with fast response induced by solution surface tension[J]. Journal of Materials Chemistry A, 2018, 6(42): 20878-20886.

[176] Huo J L, Yong J L, Chen F, et al. Trapped air-induced reversible transition between underwater superaerophilicity and superaerophobicity on the femtosecond laser-ablated superhydrophobic PTFE surfaces[J]. Advanced Materials Interfaces, 2019, 6(17): 1900262.

[177] Yong J L, Yang Q, Hou X, et al. Emerging separation applications of surface superwettability[J]. Nanomaterials, 2022, 12(4): 688.

[178] Li M J, Yang Q, Chen F, et al. Integration of great water repellence and imaging performance on a superhydrophobic PDMS microlens array by femtosecond laser microfabrication[J]. Advanced Engineering Materials, 2019, 21(3): 1800994.

[179] Li M J, Yang Q, Yong J L, et al. Underwater superoleophobic and anti-oil microlens array prepared by combing femtosecond laser wet etching and direct writing techniques[J]. Optics Express, 2019, 27(24): 35903-35913.

[180] Bai X, Yong J L, Shan C, et al. Remote, selective, and in situ manipulation of liquid droplets on a femtosecond laser-structured superhydrophobic shape-memory polymer by near-infrared light[J]. Science China Chemistry, 2021, 64(5): 861-872.

[181] Yong J L, Yang Q, Chen F, et al. Using “underwater superoleophobic pattern” to make a liquid lens array[J]. RSC Advances, 2015, 5(51): 40907-40911.

[182] Zhou C, Li G Q, Li C Z, et al. Three-level cobblestone-like TiO2 micro/nanocones for dual-responsive water/oil reversible wetting without fluorination[J]. Applied Physics Letters, 2017, 111(14): 141607.

[183] Yong J L, Yang Q, Huo J L, et al. Superwettability-based separation: from oil/water separation to polymer/water separation and bubble/water separation[J]. Nano Select, 2021, 2(8): 1580-1588.

[184] Li G Q, Fan H, Ren F F, et al. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration[J]. Journal of Materials Chemistry A, 2016, 4(48): 18832-18840.

[185] Yin K, Chu D K, Dong X R, et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation[J]. Nanoscale, 2017, 9(37): 14229-14235.

[186] Yong J L, Bai X, Yang Q, et al. Filtration and removal of liquid polymers from water (polymer/water separation) by use of the underwater superpolymphobic mesh produced with a femtosecond laser[J]. Journal of Colloid and Interface Science, 2021, 582: 1203-1212.

[187] Yong J L, Chen F, Huo J L, et al. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas[J]. Nanoscale, 2018, 10(8): 3688-3696.

[188] Zhu S W, Li J W, Cai S W, et al. Unidirectional transport and effective collection of underwater CO2 bubbles utilizing ultrafast-laser-ablated Janus foam[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18110-18115.

[189] Yong J L, Zhuang J, Bai X, et al. Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser[J]. Nanoscale, 2021, 13(23): 10414-10424.

[190] Yao Y S, Meng Q S, Peng Y B, et al. Highly efficient removal of bubbles from water pipes by femtosecond laser-designed superhydrophobic porous microstructures[J]. Applied Physics Letters, 2023, 123(21): 211601.

[191] Pan R, Zhang H J, Zhong M L. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1743-1753.

[192] Zhang J L, Yang Q, Cheng Y, et al. Slippery liquid-infused porous surface on metal material with excellent ice resistance fabricated by femtosecond Bessel laser[J]. Advanced Engineering Materials, 2022, 24(10): 2101738.

[193] Zhao Z X, Luo G Y, Cheng M P, et al. Water-repellent coatings on corrosion resistance by femtosecond laser processing[J]. Coatings, 2022, 12(11): 1736.

[194] Trdan U, Sano T, Klobčar D, et al. Improvement of corrosion resistance of AA2024-T3 using femtosecond laser peening without protective and confining medium[J]. Corrosion Science, 2018, 143: 46-55.

[195] Cheng Y, Yang Z W, Gou X D, et al. Heart valve-inspired self-lubricating anticoagulant surfaces[J]. Chemical Engineering Journal, 2023, 474: 145358.

[196] Sarbada S, Shin Y C. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser[J]. Applied Surface Science, 2017, 405: 465-475.

[197] Rong W T, Zhang H F, Zhang T J, et al. Drag reduction using lubricant-impregnated anisotropic slippery surfaces inspired by bionic fish scale surfaces containing micro-/ nanostructured arrays[J]. Advanced Engineering Materials, 2021, 23(1): 2000821.

[198] Ren F F, Li G Q, Zhang Z, et al. A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection[J]. Journal of Materials Chemistry A, 2017, 5(35): 18403-18408.

[199] Yin K, Du H F, Dong X R, et al. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection[J]. Nanoscale, 2017, 9(38): 14620-14626.

[200] Liu W J, Fan P X, Cai M Y, et al. An integrative bioinspired venation network with ultra-contrasting wettability for large-scale strongly self-driven and efficient water collection[J]. Nanoscale, 2019, 11(18): 8940-8949.

[201] Zhang J Z, Zhang Y C, Yong J L, et al. Femtosecond laser direct weaving bioinspired superhydrophobic/hydrophilic micro-pattern for fog harvesting[J]. Optics & Laser Technology, 2022, 146: 107593.

[202] Zhang C J, Yang Q, Yong J L, et al. Guiding magnetic liquid metal for flexible circuit[J]. International Journal of Extreme Manufacturing, 2021, 3(2): 025102.

[203] Wu H, Zhang L R, Jiang S J, et al. Ultrathin and high-stress-resolution liquid-metal-based pressure sensors with simple device structures[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 55390-55398.

[204] Zhang C J, Li Z K, Li H Y, et al. Femtosecond laser-induced supermetalphobicity for design and fabrication of flexible tactile electronic skin sensor[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 38328-38338.

[205] Ranella A, Barberoglou M, Bakogianni S, et al. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures[J]. Acta Biomaterialia, 2010, 6(7): 2711-2720.

[206] Singh S C, ElKabbash M, Li Z L, et al. Solar-trackable super-wicking black metal panel for photothermal water sanitation[J]. Nature Sustainability, 2020, 3(11): 938-946.

[207] Diebold E D, Mack N H, Doorn S K, et al. Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering[J]. Langmuir, 2009, 25(3): 1790-1794.

[208] Yu J, Wu J G, Yang H, et al. Extremely sensitive SERS sensors based on a femtosecond laser-fabricated superhydrophobic /-philic microporous platform[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43877-43885.

[209] Hu Y, Yong J, Hu Y, et al. Efficient concentration of trace analyte with ordered hotspots construction for robust and sensitive SERS platform[J]. International Journal of Extreme Manufacturing, 2024, 6: 111026.

雍佳乐, 吴东. 飞秒激光仿生调控材料表面浸润性:当前进展与挑战(特邀)[J]. 中国激光, 2024, 51(1): 0102002. Jiale Yong, Dong Wu. Bioinspired Controlling the Surface Wettability of Materials by Femtosecond Laser: Current Progress and Challenges (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0102002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!